欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOCX文档下载  

    华中科技大学-复变函数与积分变换练习册答案.docx

    • 资源ID:782833       资源大小:385.99KB        全文页数:32页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    华中科技大学-复变函数与积分变换练习册答案.docx

    1.求下列各复数的实部、虚部、模与幅角。l-2z 2-z(1) 3-4/ 5i ;l-2i 2-i解:3-4/ 5i16 8 .11=25 25n16 Re z = Im z =258 l l 85 IZl =25 1 125Argz = arctan + 2k A z2.将下列复数写成三角表示式。1) l-3解:1-疯c/ 5 万.5 TF. 2(cos+ zsm)33练习一J+33(2)2J+技)3解:2=(cosy+zsiny)3=e*f=-1Rez=-1Imz=0z=1Argz=万+2kZez21(2)1+i2i解:I+,=1+Z=2(cos-+zsin)443.利用复数的三角表示计算下列各式。-2+3i(1) 3+2/一2+3,解:3+2/).冗I=cosFzsin22(2) V-2+2i4/-=22(cos+sin¾解:“2+2,44334+2k.34+2k3+8A.3+8%.=28cos+smJ=28cos乃十Sin44jl1616Z=OJ,2,34.设Z,Z2,Z3三点适合条件:Z1+Z2+z3=0>IZj=IZ2=Z3=l,Z,Z2,Z3是内接于单位圆ZI±22z=的一个正三角形的项点。证:因IZIlTZ2=Z3=1,所以Zi,Z2,Z3都在圆周IZlTZlI=L又因Z+Z2+Z3=()则z+z2=-»z1+z2=-z3=1所以Z+Z2也在圆周IZI=I上,又Z+Z2-Zj=IZ2=1,所以以0,4,Z+N2为顶点的三角形是正三角形,所以向量Zl与Z+Zz2之间的张角是3,同理Z2与4+N2之间的张角也是3,于是Zl与Z2之间的张角是3,同理Zl2与Z3,Z2与Z3之间的张角都是3,所以Z|,Z2,Z3是一个正三角形的三个顶点。5.解方程d + l = °解:z3,2k + . . 2k -= -=> z = cos+ zsn33k = 0,1,2 . . 1 V3 . zl =Cos-+ zsm - = + I 133 22Z2 = cos + fsin = -1Z35冗.5=cos÷ sn=33a-6.试证:当同=1招1时,则-矽证:a- _ a- -a a a-aa'P .± = ¾ 同Ia-川a7.设z+z=2cos6(zw0,e是Z的辐角),求证z"+z."=2cos"H证:z+zT=2cos。=z2-2cos8z+1=0则Z=COSe±isin当Z=COs+isin6时ZT=CoSe-isin9zn+zn=(cosn+Zsin÷cos(-n)+Zsin(-)=2cqs110故zn+zn=2cos8当Z=COSe-isie时,同理可证。*8.思考题:(1)复数为什么不能比较大小?答:复数域不是有序域,复数的几何意义是平面上的点。(2)是否任意复数都有辐角?答:否,Z=O是模为零,辐角无定义的复数。若:若:若:.(x-a)2 + y2 =(x-b)2 'x-hOa = b则轨迹为:V = Oa>b 则 一 2y2=2(a-b)(x-)轨迹:2a + ba<b 则 2 无意义y2 =2(a-b)x + b2 -a2_z ,、/a + b、= 2(a-b)(x -)xb(3) zz + dz-az+b = Ot其中为复数6为实常数。解:由题设可知:(z + )(N + 1) + bTW=o即:z + 2 =2 -b练习二1.指出满足下列各式的点Z的轨迹是什么曲线?,冗arg(z-O=-(1)47T3z-r+ivarg(z-i)=argx+i(y-l)二:解:设2_工+”则4x>0二.«y->0x=yi则点Z的轨迹为:z-=Re(Z-A),其中。,为实数常数:解:设z=x+iy则:(x-)+H=Re(X_+»)若:同=九则Z的轨迹为一点一。,若:时>>,则Z的轨迹为圆,圆心在-。,半径为2 .用复参数方程表示曲线,连接1+i与一1一3直线段。解:z-(1+)=(-l-4Z)-(l+01/0rl则z=(1+i)(2+5i)t(0Z)3 .描出下列不等式所确定和区域与闭区域,并指明它是有界的还是无界的?是单连域还是多连域?并标出区域边界的方向。z<l,Rezgy解:由目<1,得/+y2<1Rezx7/7/->又2,得2Vo/;有界,单连域(2)Rez2<1解:令z=x+iy由Rez?<1-JV1无界,°单连域即:V>7z-1z+12解:令z=x+iy贝的O+)+-v(3)4.对于函数0=/(z)=iz,0:Imz>°,描出当Z在区域。内变化时,卬的变化范围。解:令z=x+a则w=(z)=iz=i(x+iy)=-y+ix.Imz>O,则V>0.Rew=y<0,W的变化范围在第2,3象限,但不包括虚轴Iim5.试证zt。RezIim证:J°Z不存在。YRezIim令Y=k贝ij:上述极限为1+4不确定,因而极限不存在。*6.思考题(1)怎样理解复变函数W=F(Z)?答:设W="+泣z=x+iy,则卬=/(Z)就是w+Zv=/(x+ry)=w(x,y)+zv(x,y)u=u(x9y)即v=v(,y)因此,一个复变函数/(Z)与两个实变函数"(x,y)和贝x,y)相对应,何意义上来说,复变函数可以看作是Z平面上的点集。到W平面上的点集G上的映射。从儿(2)设复变函数/(Z)当ZfZO时的极限存在,此极限值与Z趋于Zo所采取的方式(取的路径)有无关系?答:没有关系,Z以任意方式趋于ZO时,极限值都是相同的,反过来说,若令Z沿两条不同的曲线趋于Z。时极限值不相等,则说明/(Z)在ZO没有极限,这与高等数学中的情形是类似的,只是一元实函数中,X只能从左、右以任何方式趋于X。,而这里可以从四面八方任意趋于Z。练习三1 .用导数定义,求/(Z)=ZReZ的导数。解:U/(z+z)-/(z)_(z+z)Re(z+z)-ZReZz三z=Iim (Rez + Rez + zOZ1. zRez+zRez+zRez=Iimz->°AzM ) x + zy2. /nRezx1./cIim(ReZH)=Iim(Kez+zzOxOyO当ZWo时,导数不存在,当Z=O时,导数为0。2.下列函数在何处可导?何处不可导?何处解析?何处不解析?F(Z) =(1)/(z)解:1:Z1 ZyX2 +y = w(x,y) + v(x,y),2(2 + y2)2一2母(2 + y2)2Ixy (x2+ /)2 一一产 U2÷y2)2当且仅当 = 时,7(Z)满足CR条件,故当元=y时/(z)可导,但在复平面不解析。(2)f(z)=x3-3xy2+i(3x2y-y3)解:令/(z)="(%,y)+ivC°)ux=3x2-3y2vx=-6xy则uy=6xyvy=3x2-3y2因f(z)在夏平面上处处满足C-R条件,且偏导数连续,故/(Z)可导且解析。3 .设口3+心2),+(¥3+/4.2)为解析函数,试确定/,凡孔的值。解:由c-R条件可知:2ny=2ly所以=/乂3四二+nr?=_3,d_/y2所以3相=_/,且=3m=1n=I=-34 .设/S)在区域D内解析,试证明在。内下列条件是彼此等价的。,(Z)=常数:(2)/(Z)=O;(3)Ref(Z)=常数(2)Imf(Z)=常数:(5)/(Z)解析:(6)依Z)I=常数。证:由于/(Z)在且域。内解析,则可得C-R方程成立,即u_vu_vx3y且x1)-2)由/(Z)三C则/'(z)=c'=°在。内成立,故(2)显然成立,u.vv/(Z)=+1=2)-3)由dxdx办即ReyxZ)=常数uun=>=O3)-4)三常数dxdynIm/(Z)=常数.buCUeUA.、I=On=0=>w(x,y)效dxdy是常数由C-R条件生=0包二。.x>=>v(x,y)是常数4)-5)若bn(z)=g(Z)=+ic,(z)=-均,因/(Z)在Q内解析UdVeCCuvc八.=0,=0xyyyxxu(-c)u_(-c)gpxy,yx一阶偏导连续且满足C-R条件=/(Z)在。内解析5)_6)f(z)="+泣g(z)=f(z)="一而因g(z)解析,则由CR条件u_vu_v&犷dy,对F(Z)在。内解析,vav-ax-,I=OnU为常数=O=U为常数J为1/(Kl6)-DV(Z)I=常数=If(Z)I=常数,令Y+.=C分别对演求偏导数得=0若2十包&包办!/!/22VV+22Z<®、OO=<§¥包力Kijm-VW包axw-&=OIv2=v=0,/(z)=0=0若2+v20,u.unvv1=O=O,V则&dy,故=常数,由cR条件私分为常数=Z)=常数*5.思考题:(1)复变函数/S)在一点ZO可导与在z。解析有什么区别?答:/(Z)在Zo解析则必在ZO可导,反之不对。这是因为/(Z)在Zo解析,不但要求/(Z)在Zo可导,而且要求/(Z)在Z。的某个邻域内可导,因此,F(Z)在Zo解析比/(Z)在ZO可导的要求高得多,如/=IZl在ZO=O处可导,但在Z。二°处不解析。(2)函数/(Z)在区域D内解析与/(Z)在区域D内可导有无区别?答:无,(两者等价)。(3)用C-R条件判断/(Z)=u(x,y)+iv(x,y)解析时应注意些什么?答:(居y),y(,y)是否可微。(4)判断复变函数的可导性或解析性一般有哪些方法。答:一是定义。二是充要条件。三是可导(解析)函数的和、差、积、商与复合仍可导(解析)函数练习四1 .由下列条件求解析函数/(z)=+iu:w=2(x-l)y,(2)=-z解:由Z)解析可知:-F,=-匕而/2y,.=2。-1)则Kt=-wv=-2(x-1),vy=ux=2y所以W-=JVydy=2ydy=y2+P(X)-2(x-l)=Vr='(x)M=-2(x-)dx=-(x-1)2+c由/(2)=T可知C=O."(z)=2(x-)y+i(y2-+2x-l)V=arctg,X>0.(2)X22解:因尸+y由AZ)解析XU=V=Xy22可知:x+y(x,y)=uxdx=,x1dx=-x2+y2)+(y)JJX+y2yyIu>=72÷w'(y)=22.(x,y)=-In(X2+y2)+cf(z)=In(X2+y2)+c+iarctg即2X2.设U=,"Siny,求的值使y为调和函数,并求出解析函数/(z)="+汨。解:要使W覆V)为调和函数,有:AU=L+%=。,即:P?,"Sinysiny=Op=±i时,y为调和函数,要使/(Z)解析,则%二%,''二一叭u(x,y)=uxdx=vydy=epxcosydx=-epxcosy+(y)uv=epxsxy+y)=-pepxsinyP,(y)=(-p)epxsiny:.(y)=(p-)epxCoSy+cPP即:u(x,y)=pepxcosy+cJ(z)=<x(cosy+zsiny)+c=ez+cp=1ex(cosy+isny)+c=-ez+cp3.如果/(Z)=+»为解析函数,试证一是V的共物调和函数。证:因八Z)解析,有:A"=。,'=。,%=%=-所以,口均为调和函数,且一亦为调和函数3(-)a(一)vv=wr=x故一是的共挽调和函数4.如果/(Z)="+而是一解函数,试证:i(z)也是解析函数。证:因/(Z)解析,则"=匕y=-L且-均可微,从而一也可微。而if(z)=v-iu=v+i(-u)(-u)vx="=可知:办3(一)vY=-m=OX即满足C-R条件V(Z)也是解析函数。5.试解方程:e'=+VJz(冗兀f(2A,)l"2+i(2K+J)ez=+y3i=2(cos-+sin)=2e3=e3ez解:3371.z=In2+i(2k+)Zz(2)sinz+cosz=0解:由题设可知:K2'T,.:.z=k,ez46.求下列各式的值:(1)Ln(-3+4z)解:L(-3+旬=ln5+arg(-3+40In 5 + i(2k + -23T(2)3解:Ln3i-i=333,_27.eibli=27ein3+i2k'>2yeiln3+2k=27e2cos(ln3)-zsin(ln3)(3)e解:=e2(cos1+Zsin1)*7.思考题(1)为什么复变指数函数是周期函数,而实变指数函数没有周期?答:由于实数是复数的特例,因此在把实变函数中的一些初等函数推广到复变数情形时,要使定义的各种复变初等函数当Z取实数X时与相应的实变初等函数有相同的值并保持某些性质不变,但不能保持所有的性质不变。复变指数函数并不能保持实变指数函数的所有性质。如对复数z,一般没有而复变指数函数的周期性,仅当周期是复数(2女疝)时才显现出来。所谓实变指数函数"没有周期,是指其没有实的周期。(2)实变三角函数与复变三角函数在性质上有哪些异同?答:两者在函数的奇偶性、周期性、可导性上是类似的,而且导数的形式、加法定理、正余弦函数的平方和等公式也有相同的形式。最大的区别是,实变三角函数中,正弦函数与余弦函数都是有界函数,但在更变三角函数中,ISinZl1Jcosz1才由#+3.1 I与II不冉成立。因为.eiz-e'iz11.1IIJDIz1ZIkl-k1l当y>+oo时,ey0,ev+oo故卜inz->+8.(3)怎样理解实变对数函数与复变对数函数的异同?并理解复变对数函数的运算性质。答:因为我们把对数函数定义为指数函数的反函数。所以由更变指数函数的多值性推出复变对数函数也是多值函数,£nz=lnz+zz的主值即InZ=In同+argz,是单值函数,当Z=X,而x>O时,InZ就与高等数学中的InX值一致了。在复变对数函数的运算性质中,注意到等式ln(z,z2)=Inz1+lnz2ln(z1z2)=Inz1-Inz2,要对其含义理解清楚。在实变对数函数中它们的意义是明了的,但在复变指数函数中,例如,(zlz2)=Lziz2+zA(z1z2).Inz1=InlZJ+/A吆ZPInZ2=lnz2+zAaz2,而lnz1z2=lnz1+lnz2Arg(zlz2)=Argzl+Argz2应理解为:任意给定等式两端两个多值函数一对可能取的值,左端多值函数也必有一个值使等式成立。反过来也一样。也就是理解为等式两端可能取的函数值从全体上讲是相同的(即不能只考虑某一单值支)。后一式也同样理解,但对等式LnZ=Ln(ZD和LM=它两端所能取的值从全体上看还是不一致的。如对=Liz”,取"=2时,设z=rd得2Lnz=21nr+i(2+4kr)k=0,±l,±2,而从z2=r2ei2,得Z(z2)=Inr2+i(2+1mtn=0,±l,±2,两者的实部是相同的,但虚部的可取值不完全相同。(4)调和函数与解析函数有什么关系?答:如果/S)="+A是区域D内的解析函数,则它的实部优和虚部V的二阶偏导数必连续,从而满足拉普拉斯方程,所以是调和函数。由于解析函数的导函数仍是解析函数,所以它的实部和虚部的任意阶偏导数都是/(Z)的相应阶导数的实部和虚部,所以它们的任意阶偏导数都存在且连续。故可以推出:、U的任意阶偏导数仍是调和函数。(5)若V是的共辄调和函数,可以说是P的共桅调和函数吗?答:不行,两者的地位不能颠倒。因为,若U是的共枕调和函数,则应有uvvuvuuv=-=-dx犷&'而是U的共挽调和函数,要求&dy'dx8两者一般不能同时成立,所能推知的是一是y的共视调和函数。练习五+'(-y)+i2dz/1 .计算积分J°,积分路径:自原点沿实轴至1,再由1铅直向上至1+九解:m-y)+小MZI(11i)=©(X-+WdZ+_y)÷x2)这=(x+Zx2)r÷£(l-y+0Jy1 5.=一一+-I2 6I2 .计算积分'忖的值,其中C为(1)忖=2;(2)z=4.iff解:令Z=W则IYdz=上rie,d=2riJIW=UZlJt)r当尸=2时,为4刃当r = 4时,为8万sinzdz(1) J°解:JJsinzJz =-COSzm° =I-CoS 疝/1+»ze'dzJlze=dz=(/-");+'=ie"解:j,16.当积分路径是自一7沿虚轴到人利用积分性质证明:,.(2÷z)Jz2(x2+iy2)Jz'j(x2+iy2)JzJy2p51.2=2*7.思考题(1)在积分的定义中为什么要强调积分f(Z)”沿曲线C由到£的积分”?它与“沿曲线C由A到的积分“有什么区别?bf(x)dx=-f(x)dx答:在定积分中已有J",即积分是与区间的方向有关的,这里=ZAZkW=/(Z)在C上的积分也与C的方向有关。这从积分和式I中的因子z=Zq-z&T可直接看出,若改变C的方向,即F(Z)是沿曲线C由£到积分,则积分与原积分反号:c(z)Jz=-c.f(z)dz其中C"表示C的反向曲线。(2)复函数/(Z)的积分与实一元函数定积分是否一致?答:若C是实轴上的区间1a41,由定义知/(z)dz="(x)然JCJa即为一个实函数的积分,如果/(X)是实值的,则为一元实函数的定积分,因而这样定义复变函数积分是合理的,而且可以把高等数学中的一元实函数的定积分当作复积分的特例看待。应当注意的是,一般不能把起点为,终点为夕的函数/(Z)的积分记作L因为/(z)Jz.这是个线积分,要受枳分路线的限制,必须记作JC(3)应用柯西一一古萨定理应注意些什么?答:必须注意定理的条件“单连域”,被积函数虽然在8内处处解析,但只要8不是单连的,乙、11II3/(Z)=<Z<定理的结论就不成立。例如Z在圆环域:22内解析,C为域内以原点为中心的fLdZ=2i正向圆周,但JCZ,就是因为不满足“单连域”这个条件。If(z)dz=O、C还要注意定理不能反过来用,即不能因为有JC,而说J(Z)在C内处处解析,例jdz=O/(z)=±如目T,但Z在臼一】内并不处处解析。练习六1.计算下列积分z-l解:Z = I为奇点:r2z-Z+1,_2<、.2-1dz=2mQz-Z÷l)2m._2i99!z=0-99!sin zWw=2TZ - 2万(SinZy解:Tl - 2疝COSZZ =2Z 二一 2:0fcoszZ3Z,其中G:|z|=2;。2:卜1=3为负向,fWdZ=f等z+f解:JC=CIFZJClZjc2ZizCOSZCOSZx/、"lCC=(-)(cosz)z=0=04=4_=«_<!_=+4=JqJc2JGJC2Jq*Q2 .若/(Z)是区域G内的非常数解析函数,且/(Z)在G内无零点,则/(Z)不能在G内取到它的最小模。1证:设g(z)=f(z),因/(Z)为非常数解析函数,且TzG/(z)0则g(z)为非常数解析函数所以g(z)在G内不能取得最大模<8即f(z)不能在G内取得最小模3 .设/(Z)在IZKl上解析,且在忖T上有If(Z)_ZHzI,试证证:因If(Z)HZl(z)-Wt(在IZI=I上)所以V(Z)I2,(IZl=I)z4111=÷-x÷-=l-x÷-,(x,z=14 .设/(Z)与g(z)在区域。内处处解析,C为。内的任何一条简单闭曲线,它的内部全含于。,如果f(z)=g(z)在C上所有点处成立,试证在C内所有的点处/(Z)=g(z)也成立。证:设F(Z)=/(z)-g(z),因/(z),g(z)均在。内解析,所以尸(Z)在。内解析。"/、1X尸(Z)/nF(ZO)=az=()在C上,F(Z)=O,(zc),VZoc有:2mZ-Zo所以/So)=g(Z(j)由z。的任意性可知:在C内/(z)=g(z)*5.思考题(1)复合闭路定理在积分计算中有什么用处?要注意什么问题?答:由复合闭路定理,可以把沿区域外边界线的回路积分转化为沿区域内边界线的积分,从而便于计算。特别地,如果积分回路的内域中含有被积函数的有限个奇点,我们就可以挖去包含这些点的足够小的圆域(包括边界),函数在剩下的复连域解析,由复合闭路定理,就可以将大回路的积分换成分别沿这些小圆周的回路积分。利用复合闭路定理是计算沿闭曲线积分的最主要方法。使用复合闭路定理时,要注意曲线的方向,边界曲线C由G'6'02,”,。所围,f/(z)Jz=O"(z)dz=OJC,即c0+G+c;,这时5取逆时针方向,而5,"取顺时针方向,而公式/(z)dz=JG+C2+cJ(z)dz中G,G,C都取逆时针方向。(2)柯西积分公式成立的条件是什么?柯西积分公式说明了什么问题?答:柯西积分公式是建立在柯西积分定理基础上的,以柯西定理成立为前提条件,因此柯西定理的条件也是柯西积分公式成立的条件。即函数7(Z)在以C为边界的闭区域G上解析,当然也可以放宽到/(Z)在G内解析,在C上连续。柯西积分公式反映了解析函数值之间很强的内在联系,,S)在区域内点的值/3),可以用/0)在边界C上的值通过积分来表达。这就是说,函数/(Z)在区域中任一点的值,完全由它在区域边界C上的值所确定,这是实变量的可微函数所不具有的。(3)解析函数的高阶导数公式说明解析函数的导数警函数的导数有何不同?答:高阶导数公式说明,譬/(Z)只要在闭区域不中处处可微,它就一定处处无限次可微,并且它的各阶导数均为闭区域G上的解析函数。这一点与实变量函数有本质的区别。我们知道,对于实函数V=/(幻而言,即使它在某一区间上一次可导,导数/(幻不一定仍然可导,甚至可能是不连续的。练习七故级数Z ”收敛,则其通项Z °,("f 8)即序歹jZ"有极限,亦即 Z"=!h"i"=°too<X> /22.级数!是否收敛?是否绝对收敛?00解:因I£!81=Y-“T收敛,因而绝对收敛,故原级数收敛。3.试确定下列某级数的收敛半径。8ZCoS(i")z"(1)小e+e=IimnxR=Iim解:GC"+l=Iimncosincos(+1)=Iim/Ie+ee-(«+i)+e(11+)ZS+0")z"(2)=o当时1时R=I当时=1时R=I当时1时R=I/时(I)(I-Z)11OQOQ("N)?一Z)-'Z)一£Z解:UZiIZzj=on=0R=I,收敛域为目<1(2)产解:g(z)="T=e,ez-1f令f(z)=ez-l>贝(z-I)2f,(z)+f(z)=0对此求导(Z-I)2/+(N-Dr(Z)=O(Z-I)2P(Z)+(4z-3)ff(z)+2ff(z):/(0)=el9f,(0)=-e(0)=-e-'9Jff4i(0)=e-,ezl=l-z-Z2-Z3+-Z4故2!3!4!ezdzjo解:卜丝总/=Vj_y11z2n÷.台!2+:'2<n=(n+)zn(z<).n=0-1八Z)=AZ)(Z1)2J(Z1)=0fw(0)=-CT+,W<4.将下列各函数展开为Z的塞级数,并指出其收敛区域。1(zn+l-zn)5 .讨论级数=。的收敛性。8级数的部分和为S空向一、 一+11z ) = z 1IimS=lim(zrt+,-l)11-XC->OCIzl<1IimSn=-1,当z<'时,*"级数收敛。IzI>1IimSn当IT>I时不存在,级数发散。IimSn=0,当Z=I时,n-"级数收敛。4IimSn当Z=-I时,”8不存在,级数发散。乙“Izl>16 .证明I在“1>1内解析。2证:当>1时,显然z0,令WZ,则QO8XZ-"=E卬"II1,此级数在四<1是收敛的。II1I-I<1故在I叫<I是解析的,此即IZl,亦即在2>1沙II内,=|解析。*7.思考题(1)如何判定级数的绝对收敛性与收敛性?8OOkl%答:由于级数=I的各项都为非负实数,故级数I的绝对收敛性可依正项级数的定理80BSOO力Ean£oIn=SanSbnSaFEbn判定之。又由于级数向可表示为=1=|«=,其中“=I及”=|均为数项级数,S%故级数-1的收敛性可依赖于数项级数的定理判定之。88(2)判定级数”。收敛的必要条件是什么?=。绝对收敛的充要条件又是什么?Z%Iiman=0;Z/答:如同实级数一样,=。收敛的必要条件是而=。绝对收敛的充要条件是OO8ZRe%ZIm勺”=。与=。都是绝对收敛级数。(3)为什么说函数能展为幕级数与函数为解析函数是等价的?答:因为在收敛圆内,弃级数的和函数是解析函数。同时,在某点邻域内解析的函数在其邻域内必然可以展成塞级数。练习八1 .求下列函数在指定点Z。处的TayIOr展式。1 1,z0=1+z(1) 4-3Z°4.4iZ=-a=I-Z=解:/(Z)只有一个奇点3,其收敛半径为33111 1l-3z-则4-3zl-3-3(z-l-Z)1-3z3”= S(l-3z)MZ+i)r z-(i÷o<(2)解:sin z,z0 = 1sin z = sin(z-l +1) = sin(z- l)cosl + sin lcos(z-1)= CoSl 寸” Z 一尸 +sinl££(2 + l)! 占(-1)m(z-1)2w2n或:(sin Z)S)= sin(z + /?) ,(sin Z)W.71= Sin(I + 一) z = 12sin z =sin(- + l)(z - l)rt,z -1 < n=0 !22.将下列各函数在指定圆环域内展为LaUrent级数。 1(1) 22ez, 0<z<oo1-2go -+21 z2(l + - + + ) = Y解:z2= Z 2! 占 !(2)z2-2z + 5 1 2J< (z-2)(z2÷1)IzI <2解:奇点为Z = 2,±j故可在1<忖<2中展开为洛朗级数。 12z2-2z + 512 =;:(z-2)(z2+1)=72z2+12”万)Z (I+?)3,将冰+1产在Z = i的去心邻域内展为LW"Z"级数。因 解:112/z+T-11 +2z1OO二 «=01(-l)w(z-On严1 , -1所以(z2+1)2(z-i)2(z + i)2(z-02 (z + z)n=0 乙f(z)=cos(z+-)4.证明在Z以Z的各昂表出的Lanrent展开式中的各系数为:Cn=f'cos(2cos6)CoS比仇=0,±1,2乃J。Ii1iz+=2cos,Jz=ie,0d提示:令C为单位圆.1一、在C上取积分变量z=e,则Z证明:/(Z)在°忖1上解析,令c:IZI=I.0z+=2cosdz=ieid在。上取z=d则Z,cf:第5学”诏(cosQcos。)COS宓6-(rcos(2cOSe)Sindcos(2cos)sinncl=OJO2开=-J0COSQCos。)CoS田。*5.思考题(1)实变函数中函数展成TayIor级数和凝变量函数中函数展开为TaylOr级数的条件有什么不同?答:在实变量函数的情形下,即使/(X)的各阶导数都存在,欲把函数展开成箱级数也未必可能。这是因为在实变量函数里,函数/(X)展开成Taylor级数的条件既要求,*)具有各阶导函数,还要求所展成的Taylor级数的余项趋向于零,对于一个具体的函数来说,要证明其各阶导数都存在,已不容易,要证明其级数的余项趋近于零就更困难了。而对复变函数来讲,只要函数在Z。的邻域内处处解析,不仅有一阶导数,且有各阶导数。而实函数的可导性不能保证导数的连续性,因而不能保证高阶导数的存在。(2)确定了(Z)的TaylOr级数的收敛半径时,应注意什么?奇点为什么在收敛圆周上?答:一般地,7(Z)在解析区域。内一点ZO的TayIOr级数的收敛半径,等于Zo到。的边界上各点的最短距离。但7(Z)在。内有奇点时,R=Ia一z°,是/(Z)的距ZO最近的一个奇点。因此,在确定/(Z)的TayIor级数的收敛半径时,要确定F(Z)在。内有无奇点,并找出距ZO距离最近的一个奇点。(3) 奇点总是落在收敛圆周上,因为若在收敛圆内,则在圆内出现了(Z)的不解析点;若在圆外,则收敛圆还可扩大。(4) 1.aUrent级数与TayIOr级数有何关系?答:LaUrent级数与TayIOr级数的关系是:当已给函数7(Z)在点ZO处解析时,中心在z0,半径等于由Z。到函数/(Z)的最近奇点的距离的那个圆域可以看成圆环域的特殊情形。在其中就可以作出罗伦级数展开式,根据柯西积分定理,这个展式的所有系数CTS=I2,)都等于零。在此情形下,计算罗伦级数的系数公式与Taylor级数的系数公式相同,所以罗伦级数就转化为Taylor级数。因此,Taylor级数是罗伦级数的特殊情形。练习九1 .找出下列各函数的所有零点,并指明其阶数。Z2+9(1) 24Z2+9/、1=(z+3)(z-30解:Zz,所以z=±3i为一阶零点Z?,一1)2F(Z)_.=0解:(法一)令F(Z)=Z2(-1)则Z=皿i,(z)=(2z+2z3)Z-2zJr(Z)=(2+6z2)J+(2z+2z3)2zZ-2z="(z)f(z)=O z = 0wr(z)=12z/2+2z /(2) = 6sinz3+z3(z6-6)f 问 z = 0是/(Z)的几阶零点。ez2+c8z+12z3)2÷(4z2+4z3)2ze(z)=0 z = 0/(Z)=I21+24J+e2÷36z2Z+24z2e2'+(8+36z2)Z+(8z+12z3)2ze?+(16z+32z3e2'+(8z3+8z4)Z2z4)(Z)= 200 z = 0解:/(z) = 6(-l)=6(z3 -nlZ9一化工Z F(2-l)!+3!65!7!) + z9-6z3Z7!Z=0为4阶零点Z=J而(Z0)为一阶零点。(法二)令/(Z)=Z2,-1)2/1Z4Z2m=Z(1+1)1!2!m%z2Z4Z2-2=z(1+

    注意事项

    本文(华中科技大学-复变函数与积分变换练习册答案.docx)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开