直流斩波电路的性能研究.doc
word直流斩波电路的性能研究一、实验原理及容:直流斩波电路(DC Chopper)的功能是将直流电变为固定电压或可调电压的直流电,也称为直接直流-直流变换器(DC/DC Converter)。目前比较基本的和较为常用的直流斩波电路有以下几种:一) 降压斩波电路(Buck Chopper)1、电路图如下:2、降压斩波电路原理:在t=0时驱动V导通,电源E向负载供电,负载uo=E,负载电流io按指数曲线上升。当t=t1时刻,控制V关断,负载电流经二极管VD续流,负载电压uo近似为零,负载电流呈指数曲线下降。为了使负载电流连续且脉动小,通常串接L值较大的电感。只一个周期T结束,再驱动V导通,重复上一周期过程。当电路工作于稳态时,负载电流在一个周期的初值和终值相等Uo的值与占空比(alpha)成正比。3、典型应用:拖动直流电机,带蓄电池负载二) 升压斩波电路(Boost Chopper)1、电路图如下:2、升压斩波电路的原理:假设电路中电感L很大,电容C很大。当V导通,电源E向L充电,充电电流基本恒定位为I1,同时电容C上的电压向负载R供电,由于C值很大,基本保持输出电压uo位恒值,记为Uo。当V关断的时候电源与电感L同时对电容C充电,并且向负载R提供能量。当电路工作稳定时,有如下方程:Uo=(ton+toff)E/toff=TE/toff由上式可知,输出电压高于电源电压。3、典型应用:直流电动机传动,单项功率因数校正(Power Factor CorrectionPFC)电路,用于其他交直流电源中三)升降压斩波电路(Boost-Buck Chopper)1、电路图如下:2、升降压斩波电路原理:假设电感L很大,电容C很大,致使电感电流iL和电容典雅即负载电压uo基本为恒值。V导通,L充电,有电流i1。同时有电容C维持输出电压基本恒定并向负载R供电。V关断,电感L向负载提供其所储存的能量,此时有电流i2。可见负载电压极性与电源电压极性相反,故此电路又称为反极性斩波电路。稳态时,输出电压有:Uo=由此知:0<alpha<1/2时为降压,1/2<alpha<1时为升压。四)库克(Cuk)斩波电路1、电路图如下:2、库克斩波电路原理:V导通:EL1V回路和RL2CV回路分别有电流。V关断:EL1CVD回路和RL2VD回路分别有电流。原理与升压斩波电路相同。3、相对于升压斩波电路的优点:输入电源电流和输出负载电流都是连续的,且脉动较小,有利于对输入、输出进行滤波、五)Sepic斩波电路和Zeta斩波电路1、Sepic斩波电路和Zeta斩波电路的原理图:SepicZeta2、Sepic斩波电路原理:V导通,EL1V回路与C1VL2回路同时导电,L1和L2储能。V关断,EL1C1VD负载(C2和R)回路及L2VD负载回路同时导电,此阶段E和L1既向负载供电,同时也向C1充电,C1贮存的能量在V导通时向L2转移。3、Zeta斩波电路原理:V导通,电源E经开关V向电感L1贮能。同时,E和C1共同向负载R供电,并向C2充电。V关断后,L1经VD向C1充电,其贮存的能量转移至C1。同时C2向负载供电,L2的电流则经VD续流。此外,还可将升压斩波电路和降压斩波电路组合,即可构成复合斩波电路。如电流可逆斩波电路,桥式可逆斩波电路,多想多重斩波电路等。二、实验数据及处理:一)对升压斩波电路性能的研究电路图如下: 在实验中所测得的波形如下: 相关数据见表一:序号Uo(V)Ui(V)alphaT(s)12514.541%6022914.547.5%60333.614.553.6%6043814.558.56%6254014.561.61%62645.314.566.24%62749.514.569.08%62852.414.571.1%62955.014.572.65%62表 一根据实验波形与数据,可分析PWM的工作原理。二)PWM的工作原理:1) 什么是PWM?PWM(Pulse Width Modulation)控制脉冲宽度调节技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要的波形(含形状和幅值)。2) PWM控制技术在逆变电路中应用最广,应用的逆变电路绝大部分是PWM型的。3) PWM的工作原理:I 理论基础:冲量相等而形状不同的脉冲加在具有惯性的环节上式,其效果基本相同。冲量即指窄脉冲的面积。效果基本相同,是指环节的输出响应波形基本相同。低频段非常接近,仅在高频段略有差异。II 面积等效原理:分别将图1所示的电压窄脉冲加在一节惯性环节上,如图2a所示。其输出电流i(t)对不同窄脉冲时的响应波形如图2b所示。图如下:从波形可以看出,在i(t)的上升段,i(t)的形状也略有不同,但其下降断则几乎完全相同。脉脉冲越窄,各i(t)响应波形的差异越小。如果周期性的施加上脉冲,则响应i(t)也是周期性的。用傅里叶级数分解后将可看出,个i(t)在低频段的特性将非常接近,仅在高频段有所不同。用一系列等幅不等宽的脉冲来代替一个正弦半波,正弦半波N等分,看成N个相连的脉冲序列,宽度相等,但幅值不等;用矩形脉冲代替,等幅,不等宽,中点重点,面积(冲量)相等,宽度按正弦规律变化。SPWM波形脉冲宽度按正弦规律变化而和正弦波等效的PWM的。更要改变等效输出正弦波幅值,按同一比例改变各脉冲宽度即可。III PWM原理: 脉冲宽度调制波通常有一列占空比不同的矩形脉冲构成,其占空比与信号的瞬时采样值成比例。图4所示为脉冲宽度调制系统的原理图和波形图。该系统有一个比较器和一个周期为Ts的锯齿波发生器组成。语音信号如果大于锯齿波信号,比较器输出正常数A,否则输出0。因此,从图4中可以看出,笔记哦啊器输出一列下降沿调制的脉冲宽度调制波。图4 脉冲宽度调制过程(a) 调制原理图 (b)调制波形图通过图4b的分析可以看出,生成的矩形脉冲的宽度取决于下降沿时刻tk时的语音信号幅度值。因而,采样值之间的时间间隔是非均匀的。在系统的输入端插入一个采样保持电路可以得到均匀的采样信号,但是对于实际中tk-kTs<<Ts的情况,均匀采样和非均匀采样差异非常小。如果假定采样为均匀采样,第k个矩形脉冲可以表示为:k=01+mx(kTs) (1)其中,xt是离散化的语音信号;Ts是采样周期;o是未调制宽度;m是调制指数。 然而,如果对矩形脉冲作如下近似:脉冲幅度为A,中心在t=kTs处,k在相邻脉冲间变化缓慢,则脉冲宽度调制波Xp(t)可以表示为: Xp(t)ATo1+mx(t)/To+(2)其中,=o1+mx(t)/Tk。无需作频谱分析,由式(2)可以看出脉冲宽度信号有语音信号x(t)加上一个直流成分以及相位调制波构成。当o<<Ts是,相位调制部分引起的信号交迭可忽略,因此,脉冲宽度调制波可以直接通过低通滤波器进行调节。三)PWM控制芯片SG3525(A)I 芯片简介:SG3525是电流控制型PWM控制器,所谓电流控制型脉宽调制器是按照接反馈电流来调节脉宽的。在脉宽比较器的输入端直接用流过输出电感线圈的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。由于结构上有电压环和电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型控制器。II SG3525原理图:四)绘制的关系曲线:绘制方法:利用MATLAB进行曲线拟合,将数据输入MATLAB,利用MATLAB的拟合功能将的关系曲线仿真出来。数据见表一,输入的程序如下:x=57.2,50.7,44.5,39.7,36.75,32.5,29.5,2.7;y=41,47.5,53.6,58.56,61.61,66.24,69.06,71.1,72.65;p=polyfit(x,y,1)p=-1.032199.7659x2=25:2:58;y2=polyval(p,x2);plot(x,y,0,x2,y2);grid on注:由于方便,将数据均乘以100经过MATLAB仿真出来的的关系曲线见下图:将所对应的数据代入公式,Ui/U0=1/(1-alpha),结果基本符合,证明所拟合的曲线是该公式的曲线,也确实真实的反映了Ui/U0与alpha的关系。五)实际实验现象三、实验总结:总结一下触发脉冲的占空比的改变对直流斩波电路负载电压的影响,为什么会有这样的影响。设输入电压为E,负载电压为U0,占空比为电路类型占空比对负载电压U0的影响原因降压斩波电路U0随着的增大而增大,随其减小而减小;且U0<EU0=E升压斩波电路U0随着的增大而增大,随其减小而减小;且U0>EU0=E/(1-)升降压斩波电路U0随着的增大而增大,随其减小而减小;当0<<0.5时,U0<E;当0.5<<1时, U0>EU0=E/(1-)11 / 10