欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOC文档下载  

    线性规划地灵敏度分析报告实验报告材料.doc

    • 资源ID:8090       资源大小:60.50KB        全文页数:29页
    • 资源格式: DOC        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    线性规划地灵敏度分析报告实验报告材料.doc

    word运筹学/线性规划实验报告实验室: 实验日期:实验项目线性规划的灵敏度分析系 别数学系姓 名学 号班 级指导教师成 绩一 实验目的掌握用Lingo/Lindo对线性规划问题进展灵敏度分析的方法,理解解报告的容。初步掌握对实际的线性规划问题建立数学模型,并利用计算机求解分析的一般方法。二 实验环境Lingo软件三 实验容包括数学模型、上机程序、实验结果、结果分析与问题解答等例题2-10MODEL: _1 MAX= 2 * X_1 + 3 * X_2 ; _2 X_1 + 2 * X_2 + X_3 = 8 ; _3 4 * X_1 + X_4 = 16 ; _4 4 * X_2 + X_5 = 12 ;END编程sets:is/1.3/:b;js/1.5/:c,x;links(is,js):a;endsetsmax=sum(js(J):c(J)*x(J);for(is(I):sum(js(J):a(I,J)*x(J)=b(I);data:c=2 3 0 0 0;b=8 16 12;a=1 2 1 0 0 4 0 0 1 0 0 4 0 0 1;enddataend灵敏度分析 Ranges in which the basis is unchanged:Objective Coefficient Ranges Current Allowable Allowable Variable Coefficient Increase Decrease X( 3) 0.0 1.500000 INFINITY X( 4) 0.0 0.1250000 INFINITYRighthand Side Ranges Row Current Allowable Allowable RHS Increase Decrease当b2在8,32之间变化时 最优基不变最优解 Global optimal solution found at iteration: 0Variable Value Reduced CostRow Slack or Surplus Dual Price例题2-11模型MAX 2 X( 1) + 3 X( 2) SUBJECT TO 2 X( 1) + 2 X( 2) + X( 3) = 12 3 4 X( 1) + X( 4) = 16 4 4 X( 2) + X( 5) = 12 END编程sets:is/1.3/:b;js/1.5/:c,x;links(is,js):a;endsetsmax=sum(js(J):c(J)*x(J);for(is(I):sum(js(J):a(I,J)*x(J)=b(I);data:c=2 3 0 0 0;b=12 16 12;a=1 2 1 0 0 4 0 0 1 0 0 4 0 0 1;enddataend最优解 Global optimal solution found at iteration: 2Variable Value Reduced Cost Row Slack or Surplus Dual Price最优解4,3,2,0,0最优值z=17分析 Ranges in which the basis is unchanged: Objective Coefficient Ranges Current Allowable Allowable Variable Coefficient Increase Decrease X( 3) 0.0 1.500000 INFINITY X( 4) 0.0 0.5000000 INFINITY X( 5) 0.0 0.7500000 INFINITY Righthand Side Ranges Row Current Allowable Allowable RHS Increase Decrease例题2-12模型MAX 2 X( 1) + 3 X( 2) SUBJECT TO 2 X( 1) + 2 X( 2) + X( 3) = 8 3 4 X( 1) + X( 4) = 16 4 4 X( 2) + X( 5) = 12 END编程sets:is/1.3/:b;js/1.5/:c,x;links(is,js):a;endsetsmax=sum(js(J):c(J)*x(J);for(is(I):sum(js(J):a(I,J)*x(J)=b(I);data:c=2 3 0 0 0;b=8 16 12;a=1 2 1 0 0 4 0 0 1 0 0 4 0 0 1;enddataend灵敏度分析Ranges in which the basis is unchanged: Objective Coefficient Ranges Current Allowable Allowable Variable Coefficient Increase Decrease X( 3) 0.0 1.500000 INFINITY X( 4) 0.0 0.1250000 INFINITYRighthand Side Ranges Row Current Allowable Allowable RHS Increase Decrease由灵敏度分析表知道C2在【0,4】之间变化时,最优基不变。第六题模型MODEL: _1 MAX= 3 * X_1 + X_2 + 4 * X_3 ; _2 6 * X_1 + 3 * X_2 + 5 * X_3 <= 450 ; _3 3 * X_1 + 4 * X_2 + 5 * X_3 <= 300 ;END编程sets:is/1.2/:b;js/1.3/:c,x;links(is,js):a;endsetsmax=sum(js(J):c(J)*x(J);for(is(I):sum(js(J):a(I,J)*x(J)<=b(I);data:c=3 1 4;b=450 300;a=6 3 5 3 4 5;enddataEnd最优解 Global optimal solution found. Total solver iterations: 2Variable Value Reduced Cost Row Slack or Surplus Dual Price第一问:A生产50 B生产0 C生产30 有最高利润270元;第二问:单个价值系数和右端系数变化围的灵敏度分析结果Ranges in which the basis is unchanged: Objective Coefficient Ranges Current Allowable Allowable Variable Coefficient Increase Decrease X( 2) 1.000000 2.000000 INFINITY Righthand Side Ranges Row Current Allowable Allowable RHS Increase Decrease当A的利润在【2.4,4.8】之间变化时,原最优生产计划不变。第三问:模型MODEL: _1 MAX= 3 * X_1 + X_2 + 4 * X_3 + 3 * X_4 ; _2 6 * X_1 + 3 * X_2 + 5 * X_3 + 8 * X_4 <= 450 ; _3 3 * X_1 + 4 * X_2 + 5 * X_3 + 2 * X_4 <= 300 ;END编程sets:is/1.2/:b;js/1.4/:c,x;links(is,js):a;endsetsmax=sum(js(J):c(J)*x(J);for(is(I):sum(js(J):a(I,J)*x(J)<=b(I);data:c=3 1 4 3;b=450 300;a=6 3 5 8 3 4 5 2;enddataEnd最优解 Global optimal solution found. Total solver iterations: 2 Variable Value Reduced Cost Row Slack or Surplus Dual Price利润275元 值得生产。第四问由单个价值系数和右端系数变化围的灵敏度分析结果Ranges in which the basis is unchanged: Objective Coefficient Ranges Current Allowable Allowable Variable Coefficient Increase Decrease X( 2) 1.000000 2.000000 INFINITY Righthand Side Ranges Row Current Allowable Allowable RHS Increase Decrease当购置150吨时 此时可买360元 在减去购置150吨的进价60元 此时可获利300超过了原计划,应该购置。第七题模型MODEL: _1 MAX= 30 * X_1 + 20 * X_2 + 50 * X_3 ; _2 X_1 + 2 * X_2 + X_3 <= 430 ; _3 3 * X_1 + 2 * X_3 <= 410 ; _4 X_1 + 4 * X_2 <= 420 ; _5 X_1 + X_2 + X_3 <= 300 ; _6 X_2 >= 70 ; _7 X_3 <= 240 ;END编程sets:is/1.6/:b;js/1.3/:c,x;links(is,js):a;endsetsmax=sum(js(J):c(J)*x(J);sum(js(J):a(1,J)*x(J)<=b(1);sum(js(J):a(2,J)*x(J)<=b(2);sum(js(J):a(3,J)*x(J)<=b(3);sum(js(J):a(4,J)*x(J)<=b(4);sum(js(J):a(5,J)*x(J)>=B(5);sum(js(J):a(6,J)*x(J)<=b(6);data:c=30 20 50;b=430 410 420 300 70 240;a=1 2 1 3 0 2 1 4 0 1 1 1 0 1 0 0 0 1;enddataend最优解 Global optimal solution found. Total solver iterations: 4 Variable Value Reduced Cost Row Slack or Surplus Dual Price最优解0 95 205最优值12150第一问模型MODEL: _1 MAX= 30 * X_1 + 20 * X_2 + 60 * X_3 ; _2 X_1 + 2 * X_2 + X_3 <= 430 ; _3 3 * X_1 + 2 * X_3 <= 410 ; _4 X_1 + 4 * X_2 <= 420 ; _5 X_1 + X_2 + X_3 <= 300 ; _6 X_2 >= 70 ; _7 X_3 <= 190 ;END编程sets:is/1.6/:b;js/1.3/:c,x;links(is,js):a;endsetsmax=sum(js(J):c(J)*x(J);sum(js(J):a(1,J)*x(J)<=b(1);sum(js(J):a(2,J)*x(J)<=b(2);sum(js(J):a(3,J)*x(J)<=b(3);sum(js(J):a(4,J)*x(J)<=b(4);sum(js(J):a(5,J)*x(J)>=B(5);sum(js(J):a(6,J)*x(J)<=b(6);data:c=30 20 60;b=430 410 420 300 70 190;a=1 2 1 3 0 2 1 4 0 1 1 1 0 1 0 0 0 1;enddataend最优解Global optimal solution found. Total solver iterations: 4 Variable Value Reduced Cost Row Slack or Surplus Dual Price最优解10,100,190最优值13700;可行。第二问由原问题的单个价值系数和右端系数变化围的灵敏度分析结果得Ranges in which the basis is unchanged: Objective Coefficient Ranges Current Allowable Allowable Variable Coefficient Increase Decrease X( 1) 30.00000 35.00000 INFINITY Righthand Side Ranges Row Current Allowable Allowable RHS Increase Decrease 6 70.00000 25.00000 INFINITY当C2增加到310时 此时模型MODEL: _1 MAX= 30 * X_1 + 20 * X_2 + 50 * X_3 ; _2 X_1 + 2 * X_2 + X_3 <= 430 ; _3 3 * X_1 + 2 * X_3 <= 410 ; _4 X_1 + 4 * X_2 <= 420 ; _5 X_1 + X_2 + X_3 <= 310 ; _6 X_2 >= 70 ; _7 X_3 <= 240 ;END编程sets:is/1.6/:b;js/1.3/:c,x;links(is,js):a;endsetsmax=sum(js(J):c(J)*x(J);sum(js(J):a(1,J)*x(J)<=b(1);sum(js(J):a(2,J)*x(J)<=b(2);sum(js(J):a(3,J)*x(J)<=b(3);sum(js(J):a(4,J)*x(J)<=b(4);sum(js(J):a(5,J)*x(J)>=B(5);sum(js(J):a(6,J)*x(J)<=b(6);data:c=30 20 50;b=430 410 420 310 70 240;a=1 2 1 3 0 2 1 4 0 1 1 1 0 1 0 0 0 1;enddataend此时最优解 Global optimal solution found. Total solver iterations: 4 Variable Value Reduced Cost Row Slack or Surplus Dual Price即0,105,205最优值为12350,此时的最优值减去增加的价格150,得到最终的利润12350-150=12200 可行。第三问模型MODEL: _1 MAX= 30 * X_1 + 20 * X_2 + 50 * X_3 ; _2 X_1 + 2 * X_2 + X_3 <= 470 ; _3 3 * X_1 + 2 * X_3 <= 450 ; _4 X_1 + 4 * X_2 <= 420 ; _5 X_1 + X_2 + X_3 <= 300 ; _6 X_2 >= 70 ; _7 X_3 <= 240 ;END编程sets:is/1.6/:b;js/1.3/:c,x;links(is,js):a;endsetsmax=sum(js(J):c(J)*x(J);sum(js(J):a(1,J)*x(J)<=b(1);sum(js(J):a(2,J)*x(J)<=b(2);sum(js(J):a(3,J)*x(J)<=b(3);sum(js(J):a(4,J)*x(J)<=b(4);sum(js(J):a(5,J)*x(J)>=B(5);sum(js(J):a(6,J)*x(J)<=b(6);data:c=30 20 50;b=470 450 420 300 70 240;a=1 2 1 3 0 2 1 4 0 1 1 1 0 1 0 0 0 1;enddataend最优解 Global optimal solution found. Total solver iterations: 4 Variable Value Reduced Cost Row Slack or Surplus Dual Price此时最优解0,75,225最优值12750 此时的最优值12750-700=12050,即12050便是此时的利润,不可行第四问模型MODEL: _1 MAX= 30 * X_1 + 20 * X_2 + 50 * X_3 ; _2 X_1 + 2 * X_2 + X_3 <= 430 ; _3 3 * X_1 + 2 * X_3 <= 410 ; _4 X_1 + 4 * X_2 <= 420 ; _5 X_1 + X_2 + X_3 <= 300 ; _6 X_2 = 100 ; _7 X_3 <= 240 ;END编程sets:is/1.6/:b;js/1.3/:c,x;links(is,js):a;endsetsmax=sum(js(J):c(J)*x(J);sum(js(J):a(1,J)*x(J)<=b(1);sum(js(J):a(2,J)*x(J)<=b(2);sum(js(J):a(3,J)*x(J)<=b(3);sum(js(J):a(4,J)*x(J)<=b(4);sum(js(J):a(5,J)*x(J)=b(5);sum(js(J):a(6,J)*x(J)<=b(6);data:c=30 20 50;b=430 410 420 300 100 240;a=1 2 1 3 0 2 1 4 0 1 1 1 0 1 0 0 0 1;enddataend最优解 Global optimal solution found. Total solver iterations: 2 Variable Value Reduced Cost Row Slack or Surplus Dual Price即最优解0,100,200最优值12000 不可行第五问模型MODEL: _1 MAX= 30 * X_1 + 20 * X_2 + 50 * X_3 ; _2 X_1 + 2 * X_2 + X_3 <= 430 ; _3 3 * X_1 + 1.75 * X_3 <= 410 ; _4 X_1 + 4 * X_2 <= 420 ; _5 X_1 + X_2 + X_3 <= 300 ; _6 X_2 = 70 ; _7 X_3 <= 240 ;END编程sets:is/1.6/:b;js/1.3/:c,x;links(is,js):a;endsetsmax=sum(js(J):c(J)*x(J);sum(js(J):a(1,J)*x(J)<=b(1);sum(js(J):a(2,J)*x(J)<=b(2);sum(js(J):a(3,J)*x(J)<=b(3);sum(js(J):a(4,J)*x(J)<=b(4);sum(js(J):a(5,J)*x(J)=b(5);sum(js(J):a(6,J)*x(J)<=b(6);data:c=30 20 50;b=430 410 420 300 70 240;a=1 2 1 1 4 0 1 1 1 0 1 0 0 0 1;enddataend最优解 Global optimal solution found. Total solver iterations: 2 Variable Value Reduced Cost Row Slack or Surplus Dual Price即最优解0,70,230此时最优值12900,减去每天支出40,12900-40=1286012860为此时利润,方案可行。实验小结29 / 29

    注意事项

    本文(线性规划地灵敏度分析报告实验报告材料.doc)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开