欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOCX文档下载  

    图像频域处理的概述.docx

    • 资源ID:821722       资源大小:42.19KB        全文页数:10页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    图像频域处理的概述.docx

    摘要图像的频域处理是指根据一定的图像模型,对图像频谱进行不同程度修改的技术。二维正交变换是图像处理中常用的变换,其特点是变换结果的能量分布向低频成份方向集中,图像的边缘、线条在高频成份上得到反映,因此正交变换在图像处理中得到广泛运用。傅里叶作为一种典型的正交变换,在数学上有比拟成熟和快速的处理方法。卷积特性是傅里叶变换性质之一,由于它在通信系统和信号处理中的重要地位一-应用最广。在用频域方法进行卷积过程中尤其要注意傅里叶变换的周期性,注意周期延拓的重要作用,本次课设将对此作详细的介绍。关键字:频域处理,二维傅里叶变换,卷积,周期延拓1图像频域处理的概述图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。如大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;而对于地表属性变化剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高。频域处理是指根据一定的图像模型,对图像频谱进行不同程度修改的技术,通常作如下假设:1)引起图像质量下降的噪声占频谱的高频段;2)图像边缘占高频段;3)图像主体或灰度缓变区域占低频段。基于这些假设,可以在频谱的各个频段进行有选择性的修改。为什么要在频率域研究图像增强(1)可以利用频率成分和图像外表之间的对应关系。一些在空间域表述困难的增强任务,在频率域中变得非常普通。(2)滤波在频率域更为直观,它可以解释空间域滤波的某些性质。(3)可以在频率域指定滤波器,做反变换,然后在空间域使用结果滤波器作为空间域滤波器的指导。(4)一旦通过频率域试验选择了空间滤波,通常实施都在空间域进行。2二维傅里叶变换由于图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。傅立叶变换在实际中的物理意义,设f是一个能量有限的模拟信号,那么其傅立叶变换就表示f的谱。从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数来处理的。从物理效果看,傅立叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域。换句话说,傅立叶变换的物理意义是将图像的灰度分布函数变换为图像的频率分布函数,傅立叶逆变换是将图像的频率分布函数变换为灰度分布函数。2.1二维连续傅里叶变换如果二维连续函数f(x,y)满足狄里赫莱条件,那么将有下面的傅立叶变换对存在:与一维傅立叶变换类似,二维傅立叶变换的傅立叶谱和相位谱为:2.2二维离散傅里叶变换一个MXN大小的二维函数f(x,y),其离散傅立叶变换对为:在数字图像处理中,图像一般取样为方形矩阵,即NXN,那么其傅立叶变换及其逆变换为:2.3二维离散傅里叶变换的性质离散傅里叶变换主要有以下性质:L平移性质2.分配律3.尺度变换(缩放)4.旋转性5.周期性和共逝对称性6.平均值7.可分性8.卷积9.相关性。这里主要简述周期性,卷积相关内容会在下一节中介绍。离散傅里叶变换有如下周期性性质:反变换也是周期性的:频谱也是关于原点对称的:这些等式的有效性是建立在二维离散傅里叶变换公式根底上的。图像的周期性在图像处理中有非常重要的作用,下面会在卷积局部继续阐述周期性的相关内容。3卷积相关知识介绍卷积特性是傅里叶变换性质之一,由于它在通信系统和信号处理中的重要地位一一应用最广。共分二个定理:时域卷积定理;频域卷积定理。3.1时域卷积定理给定两个时间函数/(“/U)那么:fl(t)-2f(w)时%籍IFr)E(宙耍相乘即两个时间函数卷积的频谱等于各个时间函数频谱的乘积。3.2频域卷积定理给定两个时间函数/("乙那么:f(t)Fr>耳(W)噌电积_5TE(W)时域相乘。即两个时间函数频谱的卷积等效于各个时间函数的乘积(乘以系数1/2万)。3.3周期延拓在卷积中的作用基于卷积理论,频率域的乘法相当于空间域的卷积,反之亦然。当处理离散变量和傅里叶变换时,要记住不同函数所包含的周期性(节)。虽然可能不太直观,但周期性是定义离散傅里叶变换对时产生的数学副产品。周期性是处理操作的一局部,不应无视。图3.1列举了周期性的重要性。图3.1左边(ae):两个离散函数的卷积右边(fj):相同函数的卷积,考虑DFT周期性的应用。图的左边一列是用下式的一维形式计算的卷积:彳1M-I勺数字将代替那些表示函数长度和高)/(X)*)=而Jy(mM(%一机)I数。每个函数包含400个点。卷积L.>*WNZlaJ>MLU><,、,",、八“<r,"U,eWJ、.r7,,在本例情况下,对第个函数进行,在图3.1(C)中以h(-m)示出。下一步是将h(-m)滑过f(m)。这要增加一个常数X到h(-rn),即变成h(-m),如图3.1(d)所示。注意只有一个置换值。在第一次遇到时.这个简单步骤通常是引起混乱的根源。而这恰好是卷积计算的全部关键。换言之,为了执行卷积,倒转了一个函数,并将它滑过另一个函数。在每一个置换点(的每一个值)都要计算式的全部总和。这个总和不比在给定位移处f和h乘积的和更太。位移X的范围为h完全滑过f需要的所有值。图3.1(e)显示了h完全滑过f后的结果,并在X的每个点计算式。在此例中,为使h(-m)完全滑过f,x值的范围是从0到799。这幅图是两个函数的卷积。要清楚地记住卷积中的变量是X.从上面介绍的卷积理论可知,由F(U)H(U)的傅里叶反变换能得到同样的准确结果。但是,从前面对周期性的讨论又知离散傅里叶变换自动地将输入函数周期化。换言之,采用DFT允许在频率域进行卷积计算,但函数必须看做周期性的,且周期等于函数的长度。可以通过图3.1右边一列考察这种隐含的周期性。图3.1(f)同图3.1(a)-样,但同样的函数在两个方向上周期性地无限扩展(扩展局部用虚线表示)。从图3.1(g)到图3.Ki)同样应用该扩展。现在,可以通过将h(-m)滑过f(m)进行卷积。如前面一样,变化X完成滑动。然而,h(-m)的周期性扩展产生了图3.1左边的计算中所没有的值。例如,在图3.l(i)中,当X=O时,看到h(-m)右侧第一个扩展周期的一局部进入图3.1(f)中所示的f(m)(从原点开始)的一局部。当h(-m)向右滑动时,在f(m)中的那局部开始向右侧移出,但被h(-m)左侧相同局部所取代。这引起卷积产生一个常量值,如图3.l(j)所示的0,100的一段.从100到400的一段是正确的,但周期性是周而复始的,这样就引起卷积函数尾部的一局部丧失,由图3.1(j)和图3.1(e)实线局部的比拟可以看出这一点。在频率域,该过程需要计算图3.1(a)和(b)中函数的傅里叶变换。根据卷积理论,两个变换要相乘,再计算傅里叶反变换。结果包含400个点的卷积,如图3.1(j)的实线局部所示。简单的解释说明当使用傅里叶变换得出卷积函数时,错误地处理周期性将得到错误的结论。结果,在开头有错误数据,结尾将丧失数据。问题的解决方法很简单。假设f和h分别由A和B个点组成。对两个函数同时添加零,以使它们具有相同的周期,表示为P。这个过程产生扩展的或延拓的函数,如下所示:和可以看出,除非选择P2A+BT,否那么卷积的独立周期将会混叠。已经在图3.1中看到了这种现象的结果,这通常归于缠绕误差。假设P=A+BT,周期便会邻接起来。假设P>A+B-1,周期将会是分隔开的,分隔的程度等于P与A+BT的差。扩展后的卷积结果如图3.2所示。在这里,选择P=A+BT(799),即可知卷积周期是相邻的。遵循与前面的解释相同的过程,得到如图3.2(e)所示的卷积函数。该结果的一个周期与图3.1(e)相同,是正确的。这样,如果要在频率域计算卷积,应该:(1)得到两个扩展序列的傅里叶变换(每个序列有800个点);(2)将两个变换相乘;(3)计算傅里叶反变换。结果便得到正确的800个点的卷积函数,见图3.2(e)中周期加重的局部。图3.2(ae)用扩展函数执行卷积的结果这些概念扩展到二维函数时遵循了相同的前提。假设有f(x,y)和h(x,y)两幅图像,大小分别为AXB和CXD。如同一维情况,这些行列必须假定在X方向上有相同的周期P,在y方向上有相同的周期Q。二维卷积的混叠可由选择如下周期防止:扩展f(x,y)和h(x,y)形成如下周期性序列:为了简化图例,假设f和h是方形的,且大小相同,图3.3对二维函数周期延拓的说明。(a)没有延拓执行二维卷积的结果:(b)合格的函数延拓:(c)正确的卷积结果。图3.3(a)显示了图像没有延拓时得到的滤波结果。这通常是由于没有对一幅输入图像进行延拓就进行傅里叶变换,然后又乘上同样大小的函数(也没有延拓),计算傅里叶反变换。结果就是与输入图像相同的大小为AXB的图像,如图3.3(a)左上象限所示。如同一维情况,图像前面边沿(阻影局部)由于周期性而引入了错误数据,而在尾部边沿将丧失数据。如图3.3(b)所示,通过对输入图像和函数进行适宜的延拓,将得到正确的、大小为PXQ的过滤图像,如图4.38(C)所示。这幅图像在两个坐标方向上是原始图像的两倍大小,有原始图像4倍数量的像素点。4程序设计MATLAB中提供的变换函数(1)fft2:用于计算二维快速傅立叶变换,语句格式:B=fft2(I,m,n)按指定的点数计算m,返回矩阵B的大小为m×n,不写默认为原图像大小。(2)ifft2:用于计算图像的二维傅立叶反变换,语法格式:B=ifft2(i)这里在MATLAB工作路径里输入两副灰度图像,分别为'l.jpg'和'2.jpg',如下列图所示。图4.1LjPg图4.22.jpg%直接卷积程序Il=imread(,1.jpg,);I2=imread(,2.jpg,);15=ConV2(工L12);figure;imshow(I5,);IE确的频域处理程序Il=ImreadC,1.jpg,);I2=imread('2.jpg,);ml,nl=size(Il);m2,2=size(I2);II(ml+2-l1nI+n2-I)=0;I2(ml+2-l1nl+n2T)=0;I3=ifft2(fft2(Il).*fft2(12);13=13Ckml+m2-lrknl+n2-l);I3=real(13);figure¢1);imshow(I3,);毗匕拟频域方法与直接卷积的结果,显示差矩阵并且显示错误数据数F=minus(13,15);figureimshow(F);s=0;fori=l:ml+m2Tforj=l:nl+n2-lif(minusCabs(F(IJ)5O.000001)>0)s=s+l;end;end;end:%补0不够的频域处理程序Il=imread(,1.jpg,);I2=imread(,2.jpg,);ml,nl=size(11);m2,n2=size(I2);Il(ml+m2-100,nl+n2-100)=0;12(ml+112-1OO1nl+n2-100)=0;I3=ifft2(fft2(Il).*fft2(12);I3=I3(kml+m2-100,knl+n2-100);I3=real(13);I3(ml+2-l1nl+n2T)=0;figure¢1);imshow(I3,);毗匕拟频域方法与直接卷积的结果,显示差矩阵并且显示错误数据数F=minus(13,15);figure(3)imshow(F);s=0;fori=l:ml+m2-100forj=knl+n2-100if(minus(abs(F(i,j),0.000001)>0)s=s+l;end;end;end:5运行结果及结果分析在MATLAB中输入程序后,显示的卷积结果如下,图5.1止确延拓频域法得到的卷积图像图5.2补O不够频域法得到的卷积图像图5.3直接函数卷积得到的图像图5.4正确延拓差矩阵的二值图像图5.5补O不够的差矩阵的二值图像比拟图5.1和图5.3,看不出两个图像有任何区别。通过作差,认为舍入误差小于0.000001的均可作为O来处理,这里S=76295,差值矩阵的二值图像全为黑,可以认为两图几乎没有任何区别,即频域方法的卷积结果是完全正确的。比拟图5.2和图5.3,外表上也看不出两个图像有什么区别,图5.2的靠左和靠上局部有亮度增加,这局部是叠加错误,而靠下和靠右局部是两条黑杠,这是补零的数据,也就是原来丧失的数据。通过检测差值矩阵,S=327863,错误的有很多,即没有补O的频域方法计算的结果不正确。值得注意的是这里差值矩阵应该四周都是白色,因为左边和上边是混叠错误的地方应该为,行数:100,列数100:同理右边和下边是数据丧失人为补0的地方也有与混叠相同的行数和列数。但因为这里'2.jpg'周围为0,因此正确卷积的结果也为0,因此差矩阵得到的相应区域也为0,显示的2值图像就看不到白色地方了。通过以上分析说明,二维图像或矩阵的线性卷积可以通过补零周期延拓后,经二维傅里叶变换相乘,再做反变换来实现。而不补零或补零缺乏,用此方法求得卷积图像靠左靠上会有叠加错误和靠下靠右会有数据丧失。6心得体会数字图像处理是一门理论与实践紧密结合的课程。做大量的上机实验有助于进一步理解和稳固理论知识,还有助于提高分析和解决问题的能力。MATLAB强大的运算和图形处理功能,可以使数字图像处理效率大大提高,使数字图像处理工作变得十分简单和直观。这次数字图像处理课程设计历时四天,在整整四天的日子里,可以说得是苦多于甜,但是可以学到很多很多的的东西,特别是学到了很多在书本上所没有学到过的知识。以前总是在课堂上面听老师讲一些理论方面的知识,看着觉得简单。但这次课设,当我在实际中自己处理问题时,才发现有许多我们不了解的细节方面的知识,这些都需要我们在实践中去尝试解决。刚开始题目给的不清楚,没有搞明白是要干什么,通过老师的指导明确了这次课程设计的目的。这次课设说白了就是让我们验证卷积定理,用傅里叶变换和反变换都很简单。但要真正弄明白补0周期延拓还要仔细看课本,搞明白原理。而且怎么样去比拟两种算法的结果,这里想到用求差的方法,通过用差矩阵来变现两个结果的差异。但是傅里叶变换带来了复述,这里肯定有舍入误差,相减不会为0,因此要选择一个较小适宜的数字来作为差值的比拟,小于即作为0来处理。其次,以前对于MATLAB的使用还处于一知半解的状态上,但是经过这次课程设计,对于怎么去使用函数,怎样去查看一个函数的功能,在正确使用MATLAB的语法规那么上都有了很大程度的提高。通过这次课程设计使我懂得了理论与实际相结合是很重要的,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论,从而提高自己的实际动手能力和独立思考的能力。参考文献1美)冈萨雷斯等数字图像处理(MATLAB版)阮秋奇等译.北京:电子工业出版社,20052.(美)冈萨雷斯等.数字图像处理(中文版).第二版.阮秋奇等译.北京:电子工业出版社,20073.贾永红.数字图像处理.武汉:武汉大学出版社,20034.贺兴华等.MATLAB7.X图像处理.北京:人民邮电出版社,20065.朱衡君.MATLAB语言及实践教程.北京:清华大学出版社,20056.阮秋奇.数字图像处理学.北京:电子工业出版社,2000致谢首先想要感谢学校给我们这次课程设计的时机。在这次课程设计中,我们遇到了一些问题,刚开始不知道题目是什么意思,感谢黄朝兵老师不厌其烦的给我回邮件给我解释题目的意思,课设的目的,否那么我也无法顺利完成这次课程设计。还要感谢您平时对我们的悉心教导,以及辩论花费去大量的时间和精力。其次还要感谢身边的同学,感谢你们对我的帮助,在你们的帮助下我学会了很多东西。

    注意事项

    本文(图像频域处理的概述.docx)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开