欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOC文档下载  

    计算机仿真技术与CAD题答案.doc

    • 资源ID:8319       资源大小:77KB        全文页数:15页
    • 资源格式: DOC        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    计算机仿真技术与CAD题答案.doc

    绪论0-1 什么是仿真?它所遵循的基本原则是什么?答:仿真是建立在控制理论、相似理论、信息处理技术和计算机技术等理论基础之上的,以计算机和其他专用物理效应设备为工具,利用系统模型对真实或假想的系统进行试验,并借助专家经验知识、统计数据和信息资料对试验结果进行分析和研究,进而做出决策的一门综合性的试验性科学.它所遵循的基本原则是相似原理.0-2 仿真的分类有几种?为什么?答:依据相似原理来分:物理仿真、数学仿真和混合仿真.物理仿真:就是应用几何相似原理,制作一个与实际系统相似但几何尺寸较小或较大的物理模型例如飞机模型放在气流场相似的风洞中进行实验研究.数学仿真:就是应用数学相似原理,构成数学模型在计算机上进行研究.它由软硬件仿真环境、动画、图形显示、输出打印设备等组成.混合仿真又称数学物理仿真,它是为了提高仿真的可信度或者针对一些难以建模的实体,在系统研究中往往把数学仿真、物理仿真和实体结合起来组成一个复杂的仿真系统,这种在仿真环节中有部分实物介入的混合仿真也称为半实物仿真或者半物理仿真.0-3 比较物理仿真和数学仿真的优缺点.答:在仿真研究中,数学仿真只要有一台数学仿真设备如计算机等,就可以对不同的控制系统进行仿真实验和研究,而且,进行一次仿真实验研究的准备工作也比较简单,主要是受控系统的建模、控制方式的确立和计算机编程.数学仿真实验所需的时间比物理仿真大大缩短,实验数据的处理也比物理仿真简单的多.与数学仿真相比,物理仿真总是有实物介入,效果直观逼真,精度高,可信度高,具有实时性与在线性的特点;但其需要进行大量的设备制造、安装、接线与调试工作,结构复杂,造价较高,耗时过长,灵活性差,改变参数困难,模型难以重用,通用性不强.0-4 简述计算机仿真的过程.答:第一步:根据仿真目的确定仿真方案根据仿真目的确定相应的仿真结构和方法,规定仿真的边界条件与约束条件.第二步:建立系统的数学模型对于简单的系统,可以通过某些基本定律来建立数学模型.而对于复杂的系统,则必须利用实验方法通过系统辩识技术来建立数学模型.数学模型是系统仿真的依据,所以,数学模型的准确性是十分重要.第三步:建立仿真模型即通过一定算法对原系统的数学模型进行离散化处理,就连续系统言,就是建立相应的差分方程.第四步:编制仿真程序对于非实时仿真,可用一般高级语言或仿真语言.对于快速的实时仿真,往往需要用汇编语言.第五步:进行仿真实验并输出仿真结果通过实验对仿真系统模型与程序进行校验和修改,然后按系统仿真的要求输出仿真结果.0-5 什么是CAD技术?控制系统CAD可解决哪些问题?答:CAD技术,即计算机辅助设计Computer Aided Design,是将计算机高速而精确的计算能力、大容量存储和数据处理能力与设计者的综合分析、逻辑判断以与创造性思维结合起来,以加快设计进程、缩短设计周期、提高设计质量的技术.控制系统CAD可以解决以频域法为主要内容的经典控制理论和以时域法为主要内容的现代控制理论.此外,自适应控制、自校正控制以与最优控制等现代控制策略都可利用CAD技术实现有效的分析和设计.15 / 15第1章 仿真软件MATLAB1-1 对于矩阵A=1 2;3 4,MATLAB以下四条命令:A.<0.5>;A<0.5>;sqrt<A>;sqrtm<A>所得结果相同吗?它们中哪个结果是复数矩阵,为什么?答:A.<0.5>=1.0000 1.4142;1.7321 2.0000;A<0.5>= 0.5537 + 0.4644i 0.8070 - 0.2124i;1.2104 - 0.3186i 1.7641 + 0.1458i;sqrt<A>=1.0000 1.4142;1.7321 2.0000;sqrtm<A>= 0.5537 + 0.4644i 0.8070 - 0.2124i;1.2104 - 0.3186i 1.7641 + 0.1458i;其中,"A.<0.5>"表示向量的乘方,"A<0.5>"表示矩阵的乘方,"sqrt<A>"只定义在矩阵的单个元素上,即分别对矩阵的每个元素进行运算,"sqrtm<A>"表示对矩阵方阵的超越函数进行运算.1-4 求二元函数方程组:sin<x-y>=0,cos<x+y>=0 的解.答:>>x,y=solve<'sin<x-y>=0','cos<x+y>=0','x','y'>x =-1/4*pi1/4*piy =-1/4*pi1/4*pi1-5 求函数y<t>=exp<-t>*|sincost|的最大值0<=t<inf.答:>>f='<-1>*exp<-<abs<x>>>*abs<sin<cos<abs<x>>>>'>>x=fminsearch<f,0>,ymax=exp<-<abs<x>>>*abs<sin<cos<abs<x>>>>x =0ymax =0.84151-6 设D2y-3Dy+2y=x,y<0>=1,Dy<0>=0,求y<0.5>的值.答: >> f='D2y-3*Dy+2*y=x'g=dsolve<f,'y<0>=1,Dy<0>=0','x'>x=0.5;y=eval<g>y =0.61001-7 求方程cos<t>2*exp<-0.1t>=0.5t的解.答: >>t1=solve<'cos<t>2*exp<-0.1*t>=0.5*t','t'>t=eval<t1>t =0.83291-8 求方程组:x2+y2=1,xy=2 的解.答: >>x,y=solve<'x2+y2=1','x*y=2','x','y'>x =-1/2*<1/2*5<1/2>+1/2*i*3<1/2>>3+1/4*5<1/2>+1/4*i*3<1/2>-1/2*<1/2*5<1/2>-1/2*i*3<1/2>>3+1/4*5<1/2>-1/4*i*3<1/2>-1/2*<-1/2*5<1/2>+1/2*i*3<1/2>>3-1/4*5<1/2>+1/4*i*3<1/2>-1/2*<-1/2*5<1/2>-1/2*i*3<1/2>>3-1/4*5<1/2>-1/4*i*3<1/2>y =1/2*5<1/2>+1/2*i*3<1/2>1/2*5<1/2>-1/2*i*3<1/2>-1/2*5<1/2>+1/2*i*3<1/2>-1/2*5<1/2>-1/2*i*3<1/2>1-9 求f<kT>=kexp<-akT>的Z变换表达式.答: >>syms k t z;f=k*exp<-a*t>F=ztrans<f,t,z>f =k*z/exp<-a>/<z/exp<-a>-1>1-10 求一阶微分方程Dx=ax+by<t>,x<0>=x0 的解.答: >>f='Dx=a*x+b*y'x=dsolve<f,'x<0>=x0','t'>x =-b*y/a+exp<a*t>*<b*y+x0*a>/a1-12 求以下方程组边值问题的解.Df=3f+4g, Dg=-4f+3g, f<0>=0, g<0>=1答: >>f='Dx1=3*x1+4*x2,Dx2=-4*x1+3*x2'x1,x2=dsolve<f,'x1<0>=0,x2<0>=1','t'>x1 =exp<3*t>*sin<4*t>x2 =exp<3*t>*cos<4*t>第2章 控制系统的数学模型与其转换2-1 已知系统的传递函数为试用MATLAB建立其状态空间表达式.答:>>num=1 1 1;den=1 6 11 6;A,B,C,D=tf2ss<num,den>A =-6 -11 -61 0 00 1 0B =100C =1 1 1D =02-2 已知系统的状态空间表达式为试用MATLAB求其传递函数阵.答:>> A=0 1;-2 -3;B=1 0;1 1;C=1 0;1 1;D=zeros<2,2>>> num1,den1=ss2tf<A,B,C,D,1>,num2,den2=ss2tf<A,B,C,D,2>num1 =0 1.0000 4.00000 2.0000 2.0000den1 =1 3 2num2 =0 0.0000 1.00000 1.0000 1.0000den2 =1 3 22-3 已知两子系统的传递函数分别为,试利用MATLAB求两子系统串联和并联时系统的传递函数.答:>> num1=1;den1=1 3 2;num2=1;den2=1 3 0;>>num,den=series<num1,den1,num2,den2>num =0 0 0 0 1den =1 6 11 6 0>> num1=1;den1=1 3 2;num2=1;den2=1 3 0;>>num,den=parallel<num1,den1,num2,den2>num =0 0 2 6 2den =1 6 11 6 02-4 设系统的状态空间表达式为若取线性变换阵 设新的状态变量为,则利用MATLAB求在新状态变量下,系统状态空间表达式.答:>>A=0 1;-2 -3;B=1;2;C=3 0;D=0;P=1 1;1 -1;>>A1,B1,C1,D1=ss2ss<A,B,C,D,P>A1 =-2 03 -1B1 =3-1C1 =1.5000 1.5000D1 =02-5 已知离散系统状态空间表达式试用MATLAB求其系统的脉冲传递函数.答:>>A=0 1;1 3;B=0;1;C=1 1;D=0;T=1;A1,B1,C1,D1=c2dm<A,B,C,D,T>A1 =2.9598 7.33577.3357 24.9669B1 =1.95987.3357C1 =1 1D1 =0第3章 连续系统的数字仿真3-1 已知线性定常系统的状态空间表达式为且初始状态为零,试利用四阶-龙格库塔法求系统的单位阶跃响应.答:%ex3_1.mr=1;A=0 1;-5 -6;B=2;0;C=1 2;d=0;Tf=5;h=0.1;x=zeros<length<A>,1> y=0; t=0; for i=1:Tf/hK1=A* x+B*r;K2=A*<x+h*K1/2>+B*r; K3=A*<x+h*K2/2>+B*r;K4=A*<x+h*K3>+B*r;x=x+h*<K1+2*K2+2*K3+K4>/6;y=y;C*x; t=t;t<i>+h;endplot<t,y> 3-2 设单位反馈系统的开环传递函数试利用二阶-龙格库塔法求系统的单位阶跃响应.答:%ex3_2.mr=1;numo=4;deno=1,2,0;num,den=cloop<numo,deno>A,b,C,d=tf2ss<num,den>Tf=5;h=0.1;x=zeros<length<A>,1> y=0; t=0; for i=1:Tf/hK1=A* x+b*r;K2=A*<x+h*K1>+b*r;x=x+h*<K1+K2>/2;y=y;C*x; t=t;t<i>+h;endplot<t,y> 3-4 利用input<>函数修改例3-1所给程序ex3_1.m,将其中给定的参数r,numo,deno,numh和denh利用键盘输入,使其变为连续控制系统面向传递函数的通用数字仿真程序.答:3-5 利用input< >函数修改例3-2所给程序ex3_2.m,将其中给定的参数r,P,W,W0和Wc利用键盘输入,使其变为连续控制系统面向结构图的通用数字仿真程序.答:第4章 连续系统按环节离散化的数字仿真4-1 已知非线性习题如图题4-1所示,试利用连续系统按环节离散化的数字仿真方法,求输出量y的动态响应,并与无非线性环节进行比较.图略答:%ex4_1.m %主程序R=10;P=0.1 1 0.5 1 5 5; 0 1 1 0 0 0; 2 1 2 0 0 0;10 1 10 0 0 0;W=0 0 0 -1; 1 0 0 0; 0 1 0 0; 0 0 1 0;W0=1;0;0;0;Wc=0 0 0 1;Tf=25;T=0.02;A=P<:,1>B=P<:,2>C=P<:,3>D=P<:,4>FZ=P<:,5>S=P<:,6>n=length<A>for i=1:nif <A<i>=0>if <B<i>=0> E<i>=0;F<i>=0;G<i>=0;H<i>=0; L<i>=<C<i>+D<i>/T>/A<i>Q<i>=-D<i>/<A<i>*T>else E<i>=exp<-A<i>*T/B<i>> F<i>=<D<i>/B<i>-C<i>/A<i>>*<<1-E<i>>*B<i>/<A<i>*T>-1> G<i>=<D<i>/B<i>-C<i>/A<i>>*<1+<E<i>-1>*<1+B<i>/<A<i>*T>>> H<i>=1;L<i>=D<i>/B<i>Q<i>=0;endelseif <B<i>=0> E<i>=1;F<i>=0.5*C<i>*T/B<i>G<i>=F<i> H<i>=1;L<i>=D<i>/B<i>Q<i>=0;else disp<'A<i>=B<i>=0'>endendendx=zeros<length<A>,1>x0=x;z=x;u=zeros<length<A>,1>u0=u;y=zeros<length<Wc<:,1>>,1>t=0;for j=1:Tf/T u1=u; u=W*x+W0*R;for i=1:nif <FZ<i>=0>if <FZ<i>=1> u<i>=saturation<u<i>,S<i>>endif <FZ<i>=2> u<i>=deadzone<u<i>,S<i>>endif <FZ<i>=3> u<i>,u0<i>=backlash<u0<i>,u<i>,u1<i>,S<i>> endif <FZ<i>=4> u<i>=sign1<u<i>,S<i>>endendendx1=x;for i=1:n z<i>=E<i>*z<i>+F<i>*u<i>+G<i>*u1<i>x<i>=H<i>*z<i>+L<i>*u<i>+Q<i>*u1<i>endfor i=1:nif <FZ<i>=0> if <FZ<i>=5> x<i>=saturation<x<i>,S<i>>endif <FZ<i>=6> x<i>=deadzone<x<i>,S<i>>endif <FZ<i>=7> x<i>,x0<i>=backlash<x0<i>,x<i>,x1<i>,S<i>> endif <FZ<i>=8> x<i>=sign1<x<i>,S<i>>endendendy=y,Wc*x;t=t,t<j>+T;endplot<t,y>%saturation.m %子程序function x=saturation<u,s>if <abs<u>>=s>if <u>0> x= s;else x=-s;endelsex= u;end 修改"P=0.1 1 0.5 1 00; 0 1 1 0 0 0; 2 1 2 0 0 0;10 1 10 0 0 0;">>ex4_14-2 针对例3-2所给线性定常系统,试利用第4章所给程序,求系统的单位阶跃响应,并对其结果进行比较.答:>>ex3_2>>ex4_14-3 针对例4-1所给系统,去掉饱和非线性环节后求系统的单位阶跃响应,并与例4-1所得结果进行比较.答:>>ex4_1 修改"P=0.1 1 0.5 1 00; 0 1 1 0 0 0; 2 1 2 0 0 0;10 1 10 0 0 0;">>ex4_14-4 利用input< >函数修改例4-1所给程序ex4_1.m,将其中给定的参数R,P,W,W0和Wc利用键盘输入,使其变为连续控制系统按环节离散化的通用数字仿真程序.答:略第5章 采样控制系统的数字仿真5-1 已知采样控制系统的结构图如图题5-1所示图略.试利用采样控制系统的数字仿真方法,求当采样周期T=0.1s,且初始状态为零时,离散系统的单位阶跃响应.答:%ex5_1.mR=1;Gr=1;Fr=0;P=1 1 1 0 0 0;1 2 1 0 0 0;W=0 0;1 0;W0=1;0; Wc=0 1;Tf=25;Tm=0.1;T=0.01;A=P<:,1>B=P<:,2>C=P<:,3>D=P<:,4>FZ=P<:,5>S=P<:,6>n=length<A>n1=length<Fr>m1=length<Gr>for i=1:nif <A<i>=0>if <B<i>=0>E<i>=0;F<i>=0;G<i>=0;H<i>=0; L<i>=<C<i>+D<i>/T>/ A<i> Q<i>=- D<i>/< A<i>*T>else E<i>=exp<-A<i>*T/ B<i>> F<i>=<D<i>/B<i>- C<i>/ A<i>>*<<1- E<i>>* B<i>/< A<i>*T>-1>G<i>=<D<i>/B<i>- C<i>/ A<i>>*<1+< E<i>-1>*<1+ B<i>/< A<i>*T>>>H<i>=1; L<i>=D<i>/ B<i> Q<i>=0;endelseif <B<i>=0>E<i>=1;F<i>=0.5*C<i>*T/B<i>G<i>=F<i>H<i>=1;L<i>=D<i>/B<i>Q<i>=0;else disp<'A<i>= B<i>=0'>endendendx=zeros<length<A>,1> x0=x;z=x;u=zeros<length<A>,1> u0=u;y=zeros<length<Wc<:,1>>,1>t=0;Ur=zeros<n1,1> Er=zeros<m1,1>for ij=0:Tf/Tm;e=R-x<n>Er=e;Er<1:m1-1>ur=-Fr*Ur+ Gr*Er;Ur= ur;Ur<1:n1-1>for j=1:Tm/Tu1= u; u = W*x+W0*ur;for i=1:nif <FZ<i>=0>if <FZ<i>=1> u<i>=saturation<u<i>, S<i>>endif <FZ<i>=2> u<i>=deadzone<u<i>, S<i>>endif <FZ<i>=3> u<i>, u0<i>=backlash<u0<i>, u<i>, u1<i>, S<i>>endif <FZ<i>=4> u<i>=sign1<u<i>, S<i>>endendendx1= x;for i=1:nz<i>=E<i>*z<i>+F<i>* u<i>+G<i>*u1<i>x<i>=H<i>*z<i>+L<i>* u<i>+Q<i>*u1<i>endfor i=1:nif <FZ<i>=0> if<FZ<i>=5> x<i>=saturation<x<i>,S<i>>endif<FZ<i>=6> x<i>=deadzone<x<i>,S<i>>endif<FZ<i>=7>x<i>,x0<i>=backlash<x0<i>,x<i>,x1<i>,S<i>>endif<FZ<i>=8> x<i>=sign1<x<i>,S<i>>endendendy=y,Wc*x; t= t,t<length<t>>+T;endendplot<t,y>>>ex5_15-2 针对例3-2和例4-1所给连续系统,试利用第5章所给程序,求系统的单位阶跃响应,并对其结果进行比较分析.答:>>ex3_2>>ex4_1>>ex5_25-4 略第6章 动态仿真集成环境Simulink6-1 已知单变量系统如图题6-1所示图略,试利用Simulink求输出量y的动态响应.答:6-2 假设某一系由图题6-2所示的四个典型环节组成图略,试利用Simulink求输出量y的动态响应.答:6-3 已知非线性系统如图题6-3所示,试利用Simulink求输出量y的动态响应.答:6-4 已知采样系统结构如图题6-4所示,试利用Simulink求输出量y的动态响应.答:6-5 已知非线性系统如图6-5所示,试利用Simulink分析非线性环节的c值与输入幅值对系统输出性能的影响.答:1r=1 c=02r=0.5 c=03r=1 c=14r=1 c=26-6 已知线性定常系统的状态方程为试利用Simulink求u<t>为单位阶跃函数时系统状态方程的解.答:>>t,x,y=sim<'ex6_6',10>>>plot<t,y<:,1>,':b',t,y<:,2>,'-r'>legend<'y1','y2'>

    注意事项

    本文(计算机仿真技术与CAD题答案.doc)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开