欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOCX文档下载  

    CFA三级知识点必备:Derivatives and Currency Management_打印版.docx

    • 资源ID:833834       资源大小:33.04KB        全文页数:9页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    CFA三级知识点必备:Derivatives and Currency Management_打印版.docx

    CFA直)栗笺亩答BobHong1-272-27CoveredcallstrategyAninvestorcreatescoveredcallpositionbysellingacalloptiononastockthatisownedbytheoptionwriter.YieldenhancementThemostcommonmotivation.BywritinganOTMcalloption.Cashgenerationinanticipationoflimitedupsidemoves.ReducingapositionatafavorablepriceCoveredcallsmightbewritten,whenaninvestorholdsapositioninastockandintendstoreducethatholdinginthenearfuture.(TMcalloption)TargetpricerealizationHybridoftheprevioustwo.Callsarewrittenwithastrikepricejustabovethecurrentmarketprice.(OTMcalloption)CoveredcallstrategyCoveredcall:Inthisstrategy,someonewhoalreadyownssharessellsacalloptiongivingsomeoneelsetherighttobuytheirsharesattheexerciseprice.STSmax0,STX+CConclusion:WhenSTXrwehavemaximumgain5丁Sqmax0,STX+C=(&-$)*X+C=X金+CWhenS干0,wehavemaximumlossST-So-maxO,Sr-X+C=(O-)-O+C=C-SoBreakevenpointST=SLC4-27ProtectiveputstrategyAprotectiveput(alsocalledportfolioinsuranceorahedgedportfolio)isconstructedbyholdingalongpositionintheunderlyingsecurityandbuyingaputoption.Youcanuseaprotectiveputlimitthedownsideriskatthecostoftheputpremium,P0.Youwillseebythediagramthattheinvestorwillstillbeabletobenefitfromincreasesinthestock,sprice,butitwillbelowerbytheamountpaidfortheput,P0.Noticethatthecombinedstrategylooksverymuchlikeacalloption.5-27ProtectiveputstrategyProtectiveput:Someonesimultaneouslyholdsalongpositioninanassetandalongpositioninaputoptiononthatasset.Conclusion:WhenSX,theprofitisunlimited(STS°)+mx0,XSTPWhenSf,wehavemaximumloss(ST-SO)+max0,X-S一P=O-S+X-P=X-S-PooBreakevenpoint:Si=S计PVolatilitySmileWhatisvolatilitysmile?Volatilitysmileisaplotoftheimpliedvolatilityofanoptionasafunctionofitsstrikeprice.Thischapterdescribesthevolatilitysmilesthattradersuseinequityandforeigncurrencymarkets.827VolatilitySmileBasedontheput-callparitysoPmkt+SoqT=Cmkt+e-rT2Conclusions.ThedollarpricingerrorwhentheBlack-ScholesmodelisusedtopriceaEuropeanputoptionshouldbeexactlythesameasthedollarpricingerrorwhenitisusedtopricingaEuropeancalloptionwiththesamestrikepriceandtimetomaturity.TheimpliedvolatilityofaEuropeancalloptionisalwaysthesameastheimpliedvolatilityofaEuropeanputoptionwhenthetwohavethesamestrikepriceandmaturitydate.VolatilitySmileforForeignCurrencyOptionsTheimpliedvolatilityisrelativelylowforat-the-moneyoptions.Itbecomesprogressivelyhigherasanoptionmoveseitherintothemoneyoroutofthemoney.ImpliedvolatilityVolatilityincreasesasoptionsbecomesincreasinglyinthemoneyoroutofthemoney.OutoftheMoneyCallsOutoftheMoneyPutsstrikepriceAtteMoneyOptions10-27ReasonsforSmileinForeignCurrencyOptionsWhyareexchangeratenotIognormallydistributed?TwooftheContidionsforanassetpricetohavealognormaldistributionare:Thevolatilityoftheassetisconstant.Thepriceoftheassetchangessmoothlywithnojumps.Inpractice,neitheroftheseconditionsissatisfiedforanexchangerate.Thevolatilityofanexchangerateisfarfromconstant,andexchangeratesfrequentlyexhibitjumps(sometimesthejumpsareinresponsetotheactionsofcentralbanks).11-27VolatilitySmiles(skew)forEquityOptionsThevolatilityusedtopricealow-strike-priceoption(i.e.,adeepoutofthemoneyputoradeepinthemoneycall)issignificantlyhigherthanthatusedtopriceahigh-strike-priceoption(ie,adeepinthemoneyputoradeepoutofthemoneycall).ImpliedvolatilityOutoftheMoneyCallsOutoftheMoneyPutsstrikepriceAttheMoneyOptionsReasonsfortheSmileinEquityOptions1.everage(equitypriceTvolatility)Asacompany,sequitydeclinesinvalue,thecompanyzsleverageincreases.Thismeansthattheequitybecomesmoreriskyanditsvolatilityincreases.VolatilityFeedbackEffect(volatilityTequityprice)Asvolatilityincreases(decreases)becauseofexternalfactors,investorsrequireahigher(lower)returnandasaresultthestockpricedeclines(increases).Crashophobia(expectedequitypriceTimpliedvolatility)1987stockmarketcrash:higherpremiumsforputpriceswhenthestrikepriceslower.13-27StrategyRelatedtoVolatilitySkewAlongriskreversalcombineslongcallandshortputonthesameunderlyingwithsameexpiration.ForexampleIfatraderbelievesthatputimpliedvolatilityisrelativelytoohigh,comparedtothatforcalls,alongriskreversalcouldbecreatedbybuyingtheOTMcall(underpriced)andsellingtheOTMput(overpriced)forthesameexpiration.However,thiswouldcreatealongexposuretotheunderlying,whichcouldbeproblematic.14-27VolatilitySmileAlternativewaysofcharacterizingthevolatilitysmileThevolatilitysmileisoftencalculatedastherelationshipbetweentheimpliedvolatilityandKS0ratherthanastherelationshipbetweentheimpliedvolatilityandK.ArefinementofthisistocalculatethevolatilitysmileastherelationshipbetweentheimpliedvolatilityandKF0,whereFCistheforwardpirceoftheassetforacontractmaturingatthesametimeastheoptionsthatareconsidered.Anotherapproachtodefiningthevolatilitysmileisastherelationshipbetweentheimpliedvolatilityandthedeltaoftheoption.VolatilitySmileTradersallowtheimpliedvolatilitytodependontimetomaturityaswellasstrikeprice.VolatilitysurfacescombinevolatilitysmileswiththetimetomaturityandK%Impliedvolatilitytendstobeanincreasingfunctionofmaturitywhenshort-datedvolatilitiesarehistoricallylow.Volatilitytendstobeadecreasingfunctionofmaturitywhenshort-datedvolatilitiesarehistoricallyhigh.16-27VolatilityTermStructureandVolatilitySurfaceImpliedvolatilityonthez-axis;maturity(x-axis);andKS0(y-a×is).17-27UsingDerivativestoAlteringAssetAllocationAlteringassetallocationbetweenequityanddebtwithfuturesStep1:CalculatethereallocatingamountStep2:Toreallocateanamountfromequitytobonds:Removeallsystematicriskfromtheposition(beta=O)byshortingequityfutures.Adddurationtotheposition(BPV>O)bygoinglongbondfutures.Step3:Toreallocateanamountfrombondstoequity:Removealldurationfromtheposition(BVP=O)byshortingbondfutures.Addsystematicrisktotheposition(beta>O)bygoinglongequityfutures.equityCashBeta=OBPV=Obonds19-27UsingDerivativestoAlteringAssetAllocationAmendingportfoliobeta&SyntheticstockpositionsNumberofcontractsJalg“PPf'PmultiplierEquity/EquityMid-capequityB;:ToSmalMapEquityequityEquity/DebtCashBeta=ObondsBPV=O20-27VarianceSwapVarianceswapspayoffsarebasedonvarianceratherthanvolatility(standarddeviation).Theseproductsaretermedswapsastheyhavetwocounterparties,onemakingafixedpaymentandtheothermakingavariablepaymentThefixedpaymentistypicallybasedonimpliedvolatility2(impliedvariance)overtheperiodandisknownattheinitiationoftheswap,thisisreferredtoasthevariancestrikeThevariablepaymentisunknownatswapinitiationandisonlyknownatswapmaturity.Itistheactualvarianceoftheunderlyingassetoverthelifeoftheswapandisreferredtoasrealizedvariance.22-27VarianceSwapThefeaturesofvarianceswapnoexchangeofnotionalprincipalandnointerimsettlementperiods.Withavarianceswap,thereisasinglepaymentattheexpirationoftheswapbasedonthedifferencebetweenactualandimpliedvarianceoverthelifeOftheswaptnoumaInemelttesgnolnotionalvariance×(2-Ktnoumatnemelttesgnol=notionalD萌,%(notionalvega=notionalvariance×K223-27VarianceSwapTheMark-to-MarketvalueofvarianceswapThevalueofavarianceswapiszeroatinitiation,butovertime,theswapwilleithergainorlosevalueasrealizedandimpliedvolatilitydiverge.Consideraone-yearswapwherethreemonthshaveelapsedsinceinception,theMtMvalueoftheswapcanbecalculatedasfollow:VarianceSwapTheMark*to-MarketvalueofvarianceswapConsideraone-yearswapwherethreemonthshaveelapsedsinceinception,theMtMvalueoftheswapcanbecalculatedasfollow:Step1:Computeexpectedvarianceatmaturity(thetime-weightedaverageofrealizedvarianceandimpliedvarianceovertheremainderoftheswap'slife).tyituramtoecnairavdetceExp=dK(?TxT'Lr)Step2:Computeexpectedpayoffatswapmaturity:ffyoaPdetceExp=lanoiotnecnairav×(tyituramtoecnairavdetcexpe-Step#flAP½c)payoffatmaturitybacktothevaluationdate.25-27Example1.ukeAmos,anequityfundmanager,haspurchasedaone-yearvarianceswapontheS&P500withveganotionalof$100,000andastrikeof20%.NinemonthshavepassedandtheS&Phasrealizedavolatilityof21%.Thestrikepriceforathree-monthvarianceswapatthistimeisquotedat22%,andthethree-monthinterestrateis2%.Computethecurrentvalueoftheswap.2627ExampleCorrectAnswerStep1:Computetheexpectedvarianceatmaturity:932izx+222×C=330.75+121=451.751212Step2:Computetheexpectedpayoffatmaturity:Variancenotional=Vega犬ional=$1欺00=Expectedpayoffatmaturity=(2-K2)×variancenotional,whereK2=202=400expectedpayoffatmaturity=(451.75-400)×$2,500=$129,375Step3:Discountexpectedpayofffrommaturitytothevaluationdate(3months):Unannualizetheinterestrate=2%×312v=0.5%Currentvalueofswap=$¥/客=$128,731Thisisagaintothepurchaser(long)andalosstotheseller(short).

    注意事项

    本文(CFA三级知识点必备:Derivatives and Currency Management_打印版.docx)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开