FRM一级培训项目:数量分析(学习笔记).docx
FRM-级培训项目一.3T相比率非每件W雅住二2个工具FDFC斤三I,公为贝叩斯Terms>Ranomexperiment(gfl1Anobservationormeasurementprocesswithmultiplebutuncertainoutcomes.>Outcome(S®>Theresultofasingletrial.Forexample,ifwerolltwodices,anoutcomemightbe3and4;adifferentoutcomemightbe5and2>EVent停件)1表列CUtaPme(结果)的集台Theresultthatreflectsnone,one,ormoreoutcomesinthesamplespace.EventsCanbesimpleorcompound.Aneventisasubsetofthesample<ace.IfverolltwodicesiaexampleOfaneventmightberolling7in2【M1.Mutuallyexclusiveevents?件).Eventsthatcannotbothhappenatrhesametime/gg曲eegO15彘各事件)ThoseindudeMPGSSibgProbabilityrobAbrHfyE11-",*'”',.'*IT*lIMff".U,rm1lITlf',".,n,1»<»1flnhH11fpr11prH4f*4(口,l,hIljlyC口I,1IIMUhJj,ut?IrtltrEJ3H.fu,,JN火*中汜B片N,火*F=%二不=儿=4义勿工错题回饭,A%5pphaWy¥&mii$t出缪岳VProbabilityess-thanOri»tt七桃titc/rchoHttjcjje"Jir¾t Prybgbility FME)郁e£>p(Z>)=F(A同乂RB)StctP门Theprobabilitythattherandomvariables(inthiscase,bothPIA玲三P(Al麻randomvariables)takeoncertainVakJesimultaneous电P(AB).同吁也>UnconditionalProbability(边际概窣,akaInargi咆七吧也n*力TheexpectedValUeOfthevariab/ewithoutanyrestrictions(orlackinganypriorinformation),P(八).>ConditionalProbability僚件概率)GAnexpectedVaIUeforthevariableconditionalonpriorinformationorsomerestriction(e.g.,thevalueofacorrelatedvarrabJe).TheconditionalexpectationofB,conditionalonA,isgivenbyP(BA).ProbabilityandProbabilityDistributions>I需ionalpJCSi收磕篇嘉森侬,HJwJAQonditionaUaobabiHtPAB)J-)僦iT触翅邢P(AR)P(BM)=灰亦P:>O今ProbabilityandProbabilityDistributionskJointlirlji.ibtlity;f*(0jFVJ升中M"J我5一Mult.(,l.cjtonnk<中Jj叫HwW叶田“q,Wl',fi)P(U)PfRIA)MPOM-f,(f)*P*.12工二:优需*嚼踹瑞崎眦同可江与b)-G外,",HFWWProbabilityHictatleastoneoftwoeventswilloccurW巾小1IulT力厂入>+、W*PmCrS)=Pm),P(B)广俨8)IfAandBarcuIu!IyjjcU51yc.evcnt$the11:/P(AorB)=P(八)+P(B)®门A-BA旷PSB)二ProbabiHtyandProbabilityDistributionslr0evens狭娜斤斤学互稼倚,TheoccurrenceofAhasnoinfluence<rfonthfroccurreceofB.JQPfAlp=P(八)OrP(BjA)二P(B)PgB)=P(八)XP8)乘芬,去巧P(AB)=PtA)理瞿q若这£>IndependenceandMutuallyExclusivearequitedifferent.HPXrhjGiV户mjqnctjdfnrndc力£方百/CauseexclusivemeansifAoccur.Bcannotoccur,AinfluentsBstrongly.Probability0ProbabilityandProbabilityDistributions三ITk汽Hfj1隋件才崎kTota(robabilityFormufa1LA2力贝叶期。IfaneventAmustresultinoneofthfcmutuallyexclusiveeventsApA,fAj,.,An.then'1P(八)=P(AJP(A丹J+P(A?)P(AlA9+.P(An)P(AlAn)二.登也)也庇恒飞是砌先篦AiAiH/)UtI4=%AfeNC)二Ply+晔=P(八)NqA)十&Wq朗合ProbabilityandProbabilityDistributionsAExample任一卷词J央叮砒我吵祕M斤十%<%十3效以=阴?*=*'>.L三II»ProbabilityandProbabilityDistributions可喇m,%,$)?慢份病ruB)E想个啮叮呻脚学HJrHMrhru<Hp卜-Example八乂丁"jW小Wa“",r、;个人也宗!"仪出您J没后的旧用4避)在TI病的偌况下帆;小办出仃筋的Eii用2注,上科出没届的沂3L在没病的储况PmI,IM«PfA)PtmtPrnhMMlty.呼Emn§Ml-R)-M而""而小"里)一机墙说有病帆尾说没病如果人口有病002如果人R没病GoS)095下!啕沏出Im(T诃匹回修WriM后的丽回遑tffimh(j我地迎下电瓦打茄圈;X足多少?cM占机甥屏?七,M卓编迎令ProbabilityandProbabilityDistributionsSolution人9吟理=68.75%99%×10%+5%×90%>P(AlB)令ProbabilityAlgorithmIS)>HalfofthemortgagesinaPortfdioareconsideredsubprime.TheprincipalbalanceQfhalfOftheSUbPrimemortgagesandOne-quart沸Ofthenon-subprimeb"mortgagesceedsthvalueo、£21介赤*画丽selectamortgagefromtheportfolioforreviewanditsPiDugancfifxcued5tlgY曲史Ofthecollate®wh*stheprobabilitythatitisajumgmortgage?1/41/3仙号尸K1/2¢/2/3ACorrectAnswer:Dbc令巾-SibrtJ匕&中5.lI一'一一rrrm=aJ,“ProbabilityFunction&CumulativeDistnbutioriFunctionProbability令ProbabilityandProbabilityDistributions>ProbabiHDtbDescribetheprobabilitiesofallthepossibleoutcomesforarandomvariable,Threebasicforms:/Diagram.;'/TableormatrixMnctifi115弓Px=k)=±其中=,2345bProbabilityandProbabilityDistributionsA",”J<Vkv尸ptscrrlrdConiniuoiHri011VrtriflblcsD5rcterjndr11,-.'1.t'cIhrnumhu腐%.""Olulim11pr.h11rt!r*flIj11fJIorr.*,hpo*.Mb*Htforrm,th<rr>.nu.ur.b(randpos11vrprobbhtyConhnuouvv.11,tlr.Hipr11Hnhttofpntjr()tc3ruk*.匕bir.rvrnifIosvrrandupperboundsevsi"P、-OCMCBIhoughXcanoccurgj±XVqmteiW尸g%"9令 Probability and Probability DistributionsI 二21XAT >5 2)adenk Probability function: p(x) = P(X ×) FQr discrete random VariableS旭林与S -P(X) = 1P(XT)P(X-5).川Q-/Probability dentity funci6n抱f:,(x)X X* X。Forlcontinuousfrandom variable commonly > CUEUl口tivc probability fuctiQ (>aJ¾ f(xo Discrete Jht;耀牛房缺,)= P(X V 幻* Continuous/ Fa) = J二/(")d"M)XlC吁做今ProbabilityandProbabilityDistributionsARandomVariablesandTherrProbabilityDistributionsProbabilityDistributionOfa0isceteRandomVariable)/ProbabifrtyMassFunction(PMF)orProbabilityFunction(PF)f(Xxi)二P(X-Gi=1.2,3;,PropertiesofthePMF令f(X=Jq)=xH.令0f国)1<)=l令ProbabilityandProbabilityDistributionsProbability Distribution Of a Continuous Random Variable ProbebiUty dCnSity RJVCtion (PDF) A PDF has the following properties:/ The total area under the curve f(x) is 1/ P(xj X <x2)- P(Xl < X < x2) = P(Xl v X V 工2) to AI<a PqCJd令ProbabilityandProbabilityDistributions> ItUnrT3afiue DTtribUtiOn FUrlcion (CDF) 令ProbabilityandProbabilityDistributions>PropertiesofCDFF-=andF+J=Q丹的耸我力皿eF(X)isaR11jf萩虱functionsuchthatifx?>x1thenF(x,)闵F(XJF、,P(X>k)=l-F(k)灾P(XIX42)=F(Xz)-F的);今 Probability and Probability Distributions> Ml4AttPrChnhililydEJiy functi” Pdj)Lw少Ie We lake X from 1 or 2 WlthIhUamenrQu)bity We take YP(Aft)-FlA)Y产'吗产7IQtJl Pl10254-A0.7S <20.25 I0 25n仁口and Y=9 50100hofn Xl vth tfe sn<' DrobabilHvEa>jSl rW<rtj尸 DefinitiOn 也> Properties Of HlQ bivariate or joint probability mass function_(PMF)r 引尸P(X=LaW)。卜PCY) Ve for all pairs of X and YThiS is because all probabilities are nonnegMiVa lf(,) =1PIXHI)=0 5令 Probability and Probability DistributionsMarginal probability distribution Of X and YVaIueofXfx)Value of Y电)10.501075205020.25Sum1.00 ILOO> MMgi“I Probability function> Definition of marginal probability functionKX) = Tf(X1Y)InrallXf(Y) = f(X,Y)furaljr令 Probability and Probability Distributions> Statistical Independence23fY)11/91/93/921/91/91/93/931/91/91/93/93/93/93/91 Definiti OnofStatiStiCalP【XH 用引)二HXyXKYN)!第烦?一I独卷完前借的所Rca;是图i.1ProbabfIHy"】dProbabilityDistributionsPdrir*,.1Vv>.ib'n.1八,“,*I;I*1I1"l»*JM4I,hh,h,/!hLtI!1*'3V“K -不便,亦P:X Jtml ho /”,IlnCd (re< I twP< B%",另X)=TZ*I"(xY)-HX11Thankyou!dJdata,T,",K-"*«'>.-1-«-=>-«-;.-*-f=一=rUExpectedValueandVarianceBasicStatistics摘述性统mf舍CentraLMoment&kMomc,*ThCkjhmomentOfXisdehncdasm,E(Xf)6;!卜LUiCiitftiXo»1iUu11jUUr二_一_kCentralmoment°7hrklce11!,tJnuFntaHl3,dtlfdat*Ut*Xr;if卫thefirstcentralmomentisequaltoO.日”>')Ul-?Thftrfcn4jnt3mcnen!仁IhEIdCanCEd=E(Xj©!汪二力henhcjlrdjnl4jrcube】lk =力 JhcN"工史幺辽W EDnl空l3VidPd by计比Cfth。standarddeviationisHleHJnaWKT芹squareOfthevarianceisthejkjrl5s7lE寿令ExpectedValue1.ExpcctedVdIuc中/昆争Ameasureofcentraltendency-thefirstmoment.E(X)MSP(xi)Xj=P(X1)X1+P(切*P(QME(X)Jxf(x)dx 加才又含ExpectedValue尸PropertiesofExpectedValue9KblSaE(b=b&Ifais3c115ta11L厄aX)=aE&Meifaandbareconstants,thenEqX+b)=a日X)+Eb)二。E(X?)川E(X)H受郎7磷数时革:(K另sE(X+Y)=E(X)*E(YJ).#sIngeneral,E(XY)WE(X)E(Y);IfXandYar电延画歪血独立randomvariables,thenjE(XVE(X)E(YF侬丈PH)tF*)若J版则P(AB)=N今*网令Variance问"'UMl"mw川(hsrr<onIhrvrcifnHf11G*)/IX“At_、,'"八川.1P-,Hu*ijfrtr(fv,fhru<»Jnrf>r11puththr*vt,<*,v.<三ijp|h«*fn>v.tHfnrrhF<'F/CX-)M.V)-。Mkasunf.h(11vIinrsyorrr(lctjbcOutrandorrvarMbl?11H*p0Sdvequjrcootu力;,疗,.方Vnvn己帛theF竺CJKUgriMg口aspC3ldtot11iT21VarianceCr (X El 6吵) 二,E(X9 二 d%)尸PropertiesofVarianceHcconstant,then:7-O.§Ifd&CflDSianithen:q"aX)二a?。Xx).IfblSaConStanLthen:o?(X+b)=J(X).制 <J2(X) = E(X?) TE(Xn7 NX+D= f 尸!fgj少LttagJgg11Lthen:o?(aX*b)=a2?XL十IfXandYare<ndependetRandomvariablesandaandbareconstants,then2(a×+bY)=a2(X¾÷b2fY。Therelation中币betweenexpectationandvariance:告SampleMean>SampMeanThesamplemeanofarandomvariable,X,isdefinedas:斤二Zrr为hlThesamplemeanisknownasanestimatorofE(X)1whichwecannowcallthepopulationmean.Anestimateofthepopulationissimplythenumericalvalue令SampleVariance7序" TheSampIe ¼u<)t<'. <lcntt<l ly Sfwhich 也 fttr h v* * t) t><1W <'.lii Yfl sample variance is dchncd aspnpuiirvnn "gw 行俯。" I生;.:)欠" OSIimatOf of=4/I* y2distribution.片3 卜春需比攸p(j(3XJ2力公ThrrvpC5>oni111>isknownasherkqrgcofjerd!¾白由藤Cxplainthed.f.(degreesoffreedom)。ttrfirpwprnmp1ptheSfCMmhSnrPV.,vr*mustfcomputeS.RutWICeweUSethesampsampletocomputeX.haw5»八6n,mdependeMobsevabonstocomputeS;.sotospeak,weloseIdI.SampleMeanandVariancePopulationSampleMean时N©平VarianceFi1滔StandardDeviation回;8Chebyshev,sInequality>ChCbyshev'sIneqUalityForanySetofobservations(samplesopopulation),theproportionOfthevaluesthatliewithinkstandarddeviationsofthemeanisatleast1-l/N.k>1.P(IX-W也i)目二£Thkrelationshipappiese¾¾eoL>hpfi"eUbg#YA尸色厂2CorrelationCoefficientEK IlThankyou!Correlation-ToMficierit BaSiC Statistics W相岩嘴C两组金罪令 Covariance7 O 产 SiMZe=O 而.etSnsy<o ZjeqcrtiVfi (-Eu)CoV PeY)=EfPC4pQ)fY-E(Y)X=E(XV)-EOOErY)u0A Covariance即日XY)=日0日日秋i£CoVarianCeeasueshowQ11ejandomj¾J!KManotherrandomvariable.Covanancerangesfromnegativeinfinitytopositiveinfinity>PropertiesofCovariance.IfXandYareindependentrandomvariablestheircovarianceiszero.jsyih4XPU0 Cov (XlX)=El(X-E(X)(X-E(X)I=Qi(X)%V(OXOX)=吟l"XK)&力也吵工0KW(X3)#Therelationshipbetweencovarianceandvariance-”布2(X±Y)-(X)+i(Y)±2Cov(X.Y)吁1*"e(<4x)11司题啤&#)九小/J明" 0 1* 5 KwlrlrCorrelationCoefficientCorfptinnrorttKirritr-,“,tIJAU*IrprrhrSf(,orl.toCdrlfkirntRCvfl.!u*'>>MHhh<UrClJl"in,h"i“1、,“,"*八,pIwh,八x.bh'ItTg.HLihc.Jii*11(ppf*t>drnfthew(t)v.UhC7rtFlirHMorrr5P(O11rl.1nncrhcirrlvllbr“。Tlir>nrmIh*uvi5EU<t"ranpfeVa<coffo11rhtpdv.be%u:X*V)WCjm*WM士2口UoqU(Y)合CorrelationCoefficient1 Corrrhtion ccff*ct!nterprc(qfon由什&VZ0,r 1positive lwr COrfekn5InOhIHMf CorreIal 咧.,0negative linear correctionpwegajeor2frnChrr*E *s!v-ErrGICEg r - -HMeasuresofPortfolioE(RP)=>E(j)叫=EaI)Wl+E(j)叫+E(X3)HE(Xn)%3N个)=尸借UARt):玄唱£自吗SMR硬阈)"2(RP)=WWWj叫COV(Ri,RD* COy(XJJ=右丫死皆1=1JlmarketvalueofimuestmcntinassetiWj=marketualueoftheportfolioNa=/(叫R+以山)、_(tv,P)f(L)r-2<s,v('Ki-G)二岫/+加;十2出处Cuy伏I,3OThankyou!m.区-K,*aHM->-yaBpa¾-*._*,.*_BagSjbCoskewnessand卜CokurtosisBasicStatisticsSkewness注:Ada伙brttMyossetrehims如t力",>Skewness(三河Ameasureof-asymmetry»ofaPDF一thethirdmoment,刃田g吧h吵骨尸抬尻巧吁OIrtOTU姓笠心级更/t伽E(X-")3thirdcentralmomentaboutmeanS=,=.F一3cubeofstandarddeviation>SymmetricalandHonsymmetricaldistributionsPositivelyskewed(rightskewed)andnegativelyskewed(left夕呻瓦ZnaHl相喷旗捣n在用电厂Negattve-SkeweoSymmetncPositive-skewedMean=Median=ModeW*核Positiveskewed'Mod?制直/mean,havingaghtfattailexMt)侬设massto电比呼寸Ule0严(向v,ueNegativeskewed:Mode>media>mean,havingaleftfattail令KUrtoSiSUptokdttie mto¼urtie pftyt(iMic II二!BAJM 4CGJI LH 1*l< n,r,nj ir±q I. fJP (1(<tfh>,' * K v.f't' < 11; r%*. I uh' *. bw1M% I "f ' JJ M又无扬叶"B九d川Gi相 伸3 7出个同令 Kurtosis失小LeptokurtNormalDistributionA R口竺kurtjjjtbul2n has mofg frequent PxrtrPmeIY IdrgR deviatiom Qorii411gJI£3ii£KaD)a normal distribution.Q A2re 妨e true CkSVtm Oj retur右 t ItORUrtCC 弓 We %wne nwmtj.v帆We SlMote -the V>R. 7e / ½R. <s Mck/aFNb件 3F >Sf*K<. 但现晞l+令CoskewnessandCokurtosis"急IMeSS罩磁魄SThethirdcrosscennimomentisTef曰TedtoasCeSkeWness.eThefourthcrosscentralmomentisreferredtoascokurtosis.>Riskmodelswithtime-varyingvolatilityortime-varyingcorrelationcandisplayawiderangeofbehaviorsWIthveryfewfreeprmeters4ihi-tail8沱Hi5(庙豳联性)aCopulascanalsobeusedtodescribecomplexinteractionsbetweenvariablesthatgobeyondcovariances,andhavebecomePoPUlarinriskmanagementinrecentyears.3CoskewnessandCokurtosisExampleA«umcfourscriesofhindrclurn5(A.氏&D)whorethemean,standarddcvalin.skew,andku11oisarealltheampjbutonlytheordcfofctussdifferentUmeIAonr.DCDIilliriCA*日COIK3”153%I1<1、53".心3-72%2J3H-,/100%33Hj153%458%S3M,00%38,00%519%19%G77%72%72%67153、1M%153%38%T(1537»I95%Thetwoportfolios(A+BandC«D)havethesamemeanandstandarddeviation,buttheskewsoftheportfoliosaredifferent.令CoskewnessandCokurtosisSCaURfPloISshowthedifferencebetweenBversusAandDversusC:/AandB:theirbestpositivereturnsoccurduringthesametimeperiod,butIheirworstnegativeretf11soccurindifferentperiods.ThiscausesthedistributionOfpointstobeskev/edtowardthetop-rightofthechart.CandD.theirworstnegativereturnsoccurinthesameperiodbuttherbestpositivereturnsoccurindifferentperiods.Inthesecondchart,thepointsareskewedtowardrhebottom-leftof(hechart令CoskewnessandCokurtosisThereasontheabovechartslookdifferentorthe侔独曲t>ereturnsQflhetw。portfoliosaredifferent,isbecausetheCQSkCWne55betweentheportfoliosisdifferent.Notices,毛尸。GandF依andD)«碱,w一0S8”099Qf3ttWQVa11aDieS.)d!U/Forexample力灯=EK胃尸¾说明辞手无处游,9Ja)=EIX-讲IL()yS=日X-EX),疝ThenontrivialCpkurlgsisCrftwoVanaMes:(and玉,/ForexampleKXXxY二SmWn终=tyj令BestLinearUnbiasedEstimator(BLUE)川口3g""rBLUlnolhrrproprr1yof»»"<v"1p%hr114tr.h11r>1111(jfjlIhliphoui<i"«iHfrhr114tr(*,itc;“itjrus<das.lf"%Mh"Mhcn11ltl11r.a)erlata)Utheestimator«5theh,J.v<(ablrk(1.h%lh<,finrrnuu;WMlnrr>),(xhfl