车辆运动状态的确定方法、系统、终端及可读存储介质.docx
patexpl®rer专利探索者-全球创新始于探索车辆运动状态的确定方法、系统、终端及可读存储介质申请号:CN.3申请日:20180823申请(专利权)人:深圳大学地址:广东省深圳市南山区南海大道3688号发明人:李岩山,罗成华,郭天宇,吴豪明,黄晓坤,王敏主分类号:G06K9/00公开(公告)号:CNB公开(公告)日:20210406代理机构:深圳市恒申知识产权事务所(普通合伙)代理人:袁文英(19)中华人民共和国国家知识产权局(12)发明专利(10)授权公告号CNB(45)授权公告日20210406(21)申请号CN.3(22)申请日20180823(71)申请人深圳大学地址广东省深圳市南山区南海大道3688号(72)发明人李岩山,罗成华,郭天宇,吴豪明,黄晓坤,王敏(74)专利代理机构深圳市恒申知识产权事务所(普通合伙)代理人袁文英(54)发明名称车辆运动状态的确定方法、系统、终端及可读存储介质(57)摘要本发明适用于交通监控领域,提供了一种车辆运动状态的确定方法,包括:获取目标车辆在检测区域的检测视频中的位置集合:根据所述位置集合中的坐标信息确定所述目标车辆的位移矢量,以所述位移矢量确定所述目标车辆的运动轨迹;根据所述目标车辆的运动轨迹,采用模糊运动状态来确定所述目标车辆的运动状态。本发明实施例通过模糊运动状态来衡量目标车辆的运动状态,能够在目标车辆的轨迹时刻变化时,在检测区域中确定目标车辆的运动状态。权利要求书1. 一种车辆运动状态的确定方法,其特征在于,包括:获取目标车辆在检测区域的检测视频中的位置集合,所述获取R标车辆在检测区域的检测视频中的位置集合包括:采集道路上预先划定的检测区域的检测视频,所述检测视频中包含有所述目标车辆;获取所述目标车辆在所述检测视频中每一帧图片上的位置,得到所述目标车辆在所述检测视频中的位置集合TrajObj;TrajObj=p1,p2,pm=(xl,yl),(x2,y2),,(xm,ym),其中,(x1,y1)表示起点,(xm,ym)表示终点;根据所述位置集合中的坐标信息确定所述目标车辆的位移矢量,以所述位移矢量确定所述目标车辆的运动轨迹,所述根据所述位置集合中的坐标信息确定所述目标车辆的位移矢量,以所述位移矢量确定所述目标车辆的运动轨迹包括:以(xI,y1)表示所述目标车辆行驶的起点,(xm,ym)表示终点,表示所述目标车辆从起点指向终点的位移矢量,即:其中,表示从原点0指向P1的向量,表示从原点0指向Pm的向量,所述目标车辆Obj在不同方向上的位移分量为XS和ys,即:当XS0时,表示所述目标车辆Obj在X轴方向上有运动;当ys0时,表示所述目标车辆Obj在y轴方向上有运动:以X轴到的夹角O分析位移矢量的方向,设r为的模,贝U:所述检测区域S的下边界为y=L,所述检测区域中车流方向沿y轴为正方向,若ymL,则确定所述目标车辆Obj正在或己经驶出检测区域,否ym4,则确定说明所述目标车辆未能正常驶出检测区域,最终得到所述目标车辆在所述检测区域内的运动轨迹;根据所述目标车辆的运动轨迹,采用模糊运动状态来确定所述目标车辆的运动状态,其中,设所述目标车辆Obj的模糊运动状态mot0包括:向右横穿马路Ra、正常行驶Nm、向左横穿马路La和逆行Re;所述目标车辆Obj的运动状态mot对应的隶属度函数包括:若fRa()越大,则表示模糊运动状态mot属于向右横穿马路Ra的程度越大,当或时,模糊运动状态mot0为向右横穿马路Ra:当时,模糊运动状态Inot0处于向右横穿马路Ra和正常行驶Nm的临界状态;当时,模糊运动状态mot0处于向右横穿马路Ra和逆行Re的临界状态;若fNm(9)越大,则表示模糊运动状态mot属于正常行驶Nm的程度越大,当时,模糊运动状态mot8为正常行驶Nm:当时,模糊运动状态mot处于正常行驶Nin和向右横穿马路Ra的临界状态:当时,模糊运动状态mot0处于正常行驶Nm和向左横穿马路La的临界状态;若fLa(9)越大,则表示模糊运动状态mot属于向左横穿马路La的程度越大,当时,模糊运动状态mot为向左横穿马路La;当时,模糊运动状态mot«处于向左横穿马路La和正常行驶Nm的临界状态;当时,模糊运动状态mot处于向左横穿马路La和逆行Re的临界状态;若fRe(0)越大,则表示模糊运动状态mot属于逆行Re的程度越大,当时,模糊运动状态mot0为逆行Re;当时,模糊运动状态mot处于逆行Re和向左横穿马路La的临界状态;当时,模糊运动状态mot0处于逆行Re和向右横穿马路Ra的临界状态。2. 一种车辆运动状态的确定系统,其特征在于,包括:位置获取单元,用于获取目标车辆在检测区域的检测视频中的位置集合,所述位置获取单元具体用于:轨迹获取单元,用于根据所述位置集合中的坐标信息确定所述目标车辆的位移矢量,以所述位移矢量确定所述目标车辆的运动轨迹,所述轨迹获取单元具体用于:以(xI,y1)表示所述目标车辆行驶的起点,(xm,ym)表示终点,表示所述目标车辆从起点指向终点的位移矢量,即:其中,表示从原点0指向Pl的向量,表示从原点0指向Pm的向量,所述目标车辆Obj在不同方向上的位移分量为XS和ys,即:以X轴到的夹角分析位移矢量的方向,设r为的模,则:状态确定单元,用于根据所述目标车辆的运动轨迹,采用模糊运动状态来确定所述目标车辆的运动状态,所述状态确定单元具体用于:若fRa(9)越大,则表示模糊运动状态mot属于向右横穿马路Ra的程度越大,当或时,模糊运动状态mot0为向右横穿马路Ra:当时,模糊运动状态InOt0处于向右横穿马路Ra和正常行驶Nm的临界状态;当时,模糊运动状态Inot0处于向右横穿马路Ra和逆行Re的临界状态;若fNm()越大,则表示模糊运动状态mot属于正常行驶Nm的程度越大,当时,模糊运动状态mot0为正常行驶Nm;当时,模糊运动状态mot0处于正常行驶Nin和向右横穿马路Ra的临界状态:当时,模糊运动状态mot0处于正常行驶Nm和向左横穿马路La的临界状态;若fLa(9)越大,则表示模糊运动状态mot属于向左横穿马路La的程度越大,当时,模糊运动状态mot为向左横穿马路La:当时,模糊运动状态mot8处于向左横穿马路La和正常行驶Nm的临界状态:当时,模糊运动状态mot0处于向左横穿马路La和逆行Rc的临界状态;若fRe(8)越大,则表示模糊运动状态mot属于逆行Re的程度越大,当时,模糊运动状态mot为逆行Re;当时,模糊运动状态mot处于逆行Re和向左横穿马路La的临界状态;当时,模糊运动状态motB处于逆行Re和向右横穿马路Ra的临界状态。3. 一种终端,包括存储器、处理器及存储在所述存储器上且在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时,实现如权利要求1所述的车辆运动状态的确定方法中的各个步骤。4. 一种可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时,实现如权利要求1所述的车辆运动状态的确定方法中的各个步骤。说明书车辆运动状态的确定方法、系统、终端及可读存储介质技术领域本发明属于交通监控领域,尤其涉及一种车辆运动状态的确定方法、系统、终端及可读存储介质。背景技术近年来,交通监控视频技术的发展和其旺盛的实际需求吸引了大量的国内外研究者对视频中的交通异常检测及相关算法展开了深入研究。NilakornSeenOUVong等人提出了基于计算机视觉的车辆计数算法,计数的精确度高,提高了对车流量监测的准确程度:NOWoSielSki,A等人基于Camshift算法,提出了一种新的车辆轨迹模式识别算法,能够对车辆的非法停车或非法转弯等行为准确分析识别;DaW-TUngLin等人则提出SUPerPiXeI跟踪算法和车辆轨迹分析技术,并应用于十字路口的交通监控;SangHai-feng等人提出了一种通过检测和跟踪车辆轨迹判断车辆是否逆行和超速的系统:Li等人采用了提取特征点来检测分析交通异常的方法,准确性上有所提升;HanlinTan则提出一种基于稀疏光流法的异常检测算法,可以检测逆行和横穿马路等交通异常情况;LiNing等人则提出了一种综合多种交通信息对异常情况进行分析的算法,提高了系统分析的适用性;AhmedTageldin等人提出了一种在特定时间内道路上目标间距离来判断交通情况的方法,并以此来解决高度拥堵的交通状态下行人与车辆的冲突问题;杨志勇等人通过融合模糊逻辑和改进的增量比较算法,建立了一种基于模糊逻辑的高速公路交通事件检测模型,该模型通过提取车辆速度和车流量信息来进行事件分析,但由于交通状况十分复杂,该模型检测的前提有一定的局限性。SiyuanLiu等人则提出利用GPS提取城市出租车的轨迹数据,分析出租车移动速度来检测城市道路拥堵情况。然而,基于GPS定位的异常检测虽然精度高,但也大大提高了检测成本,实用性不足。同时,在现有技术中,由于目标车辆的轨迹时刻处于变化状态,量化地输出其位移距离和矢量方向难以界定目标车辆的运动状态。发明内容本发明所要解决的技术问题在于提供一种车辆运动状态的确定方法、系统、终端及可读存储介质,旨在解决现有技术中,由于目标车辆的轨迹时刻处于变化状态,量化地输出其位移距离和矢量方向难以界定目标车辆的运动状态的问题。本发明是这样实现的,一种车辆运动状态的确定方法,包括:获取目标车辆在检测区域的检测视频中的位置集合;根据所述位置集合中的坐标信息确定所述目标车辆的位移矢量,以所述位移矢量确定所述目标车辆的运动轨迹;根据所述目标车辆的运动轨迹,采用模糊运动状态来确定所述目标车辆的运动状态。进一步地,所述获取目标车辆在检测区域的检测视频中的位置集合包括:采集道路上预先划定的检测区域的检测视频,所述检测视频中包含有所述目标车辆;获取所述目标车辆在所述检测视频中每一帧图片上的位置,得到所述目标车辆在所述检测视频中的位置集合TrajObj:TrajObjp1,p2,,pm=(x1,y1)r(x2,y2)j-,(x,ym),其中,(x1,y1)表示起点,(xm,ym)表示终点。进一步地,所述根据所述位置集合中的坐标信息确定所述目标车辆的位移矢量,以所述位移矢量确定所述目标车辆的运动轨迹包括:以(X1,y1)表示所述目标车辆行驶的起点,(xm,ym)表示终点,表示所述目标车辆从起点指向终点的位移矢量,即:其中,表示从原点0指向PI的向量,表示从原点O指向Pnl的向量,所述目标车辆Obj在不同方向上的位移分量为XS和ys,即:当XSKo时,表示所述目标车辆Obj在X轴方向上有运动;当ysWO时,表示所述目标车辆ObJ在y轴正方向上有运动;以X轴到的夹角分析位移矢量的方向,设r为的模,则:所述检测区域S的下边界为y=L,所述检测区域中车流方向沿y轴为正方向,若ym2L,则确定所述目标车辆Obj正在或已经驶出检测区域,否ym<L,则确定说明所述目标车辆未能正常驶出检测区域,最终得到所述目标车辆在所述检测区域内的运动轨迹。进一步地,所述根据所述目标车辆的运动轨迹,采用模糊运动状态来确定所述目标车辆的运动状态包括:设所述目标车辆Obj的模糊运动状态mot包括:向右横穿马路Ra、正常行驶Nm、向左横穿马路La和逆行Re:所述目标车辆Obj的运动状态mot0对应的隶属度函数包括:若fRa(0)越大,则表示模糊运动状态mot属于向右横穿马路Ra的程度越大,当或时,模糊运动状态mot0为向右横穿马路Ra;当时,模糊运动状态mot处于向右横穿马路Ra和正常行驶Nm的临界状态:当时,模糊运动状态mot处于向右横穿马路Ra和逆行Re的临界状态;若fNm(0)越大,则表示模糊运动状态mot0属于正常行驶Nm的程度越大,当时,模糊运动状态mot0为正常行驶:;当时,模糊运动状态mot处于正常行驶Nln和向右横穿马路Ra的临界状态;当时,模糊运动状态mot0处于正常行驶Nm和向左横穿马路La的临界状态;若fLa(0)越大,则表示模糊运动状态mot0属于向左横穿马路La的程度越大,当时,模糊运动状态mot«为向左横穿马路La;当时,模糊运动状态mot9处于向左横穿马路La和正常行驶Nm的临界状态;当时,模糊运动状态mot处于向左横穿马路La和逆行Re的临界状态;若fRe(0)越大,则表示模糊运动状态mot属于逆行Re的程度越大,当时,模糊运动状态mot0为逆行Re;当时,模糊运动状态mot0处于逆行Re和向左横穿马路La的临界状态;当时,模糊运动状态mot0处于逆行Re和向右横穿马路Ra的临界状态。本发明实施例还提供了一种车辆运动状态的确定系统,包括:位置获取单元,用于获取目标车辆在检测区域的检测视频中的位置集合:轨迹获取单元,用于根据所述位置集合中的坐标信息确定所述目标车辆的位移矢量,以所述位移矢量确定所述目标车辆的运动轨迹:状态确定单元,用于根据所述目标车辆的运动轨迹,采用模糊运动状态来确定所述目标车辆的运动状态。进一步地,所述位置获取单元具体用于:采集道路上预先划定的检测区域的检测视频,所述检测视频中包含有所述目标车辆;获取所述目标车辆在所述检测视频中每一帧图片上的位置,得到所述口标车辆在所述检测视频中的位置集合TrajObj:TrajObj=p1,p2,,Pm=(x1,y1),(x2,y2),(xm,ym),其中,(x1,y1)表示起点,(xm,ym)表示终点。进一步地,所述轨迹获取单元具体用于:以(X1,y1)表示所述目标车辆行驶的起点,(xm,ym)表示终点,表示所述目标车辆从起点指向终点的位移矢量,即:其中,表示从原点0指向Pl的向量,表示从原点0指向Pm的向量,所述目标车辆Obj在不同方向上的位移分量为XS和ys,即:当Xs0时,表示所述目标车辆Obj在X轴方向上有运动;当ys0时,表示所述目标车辆Obj在y轴正方向上有运动;以X轴到的夹角O分析位移矢量的方向,设r为的模,贝1J:所述检测区域S的下边界为y=L,所述检测区域中车流方向沿y轴为正方向,若ymL,则确定所述目标车辆Obj正在或己经驶出检测区域,否ym<L,则确定说明所述目标车辆未能正常驶出检测区域,最终得到所述目标车辆在所述检测区域内的运动轨迹。进一步地,所述状态确定单元具体用于:设所述目标车辆Obj的模糊运动状态mot包括:向右横穿马路Ra、正常行驶Nm、向左横穿马路La和逆行Re:所述目标车辆Obj的运动状态mot0对应的隶属度函数包括:若fRa(0)越大,则表示模糊运动状态mot属于向右横穿马路Ra的程度越大,当或时,模糊运动状态mot0为向右横穿马路Ra;当时,模糊运动状态mot处于向右横穿马路Ra和正常行驶Nm的临界状态:当时,模糊运动状态mot处于向右横穿马路Ra和逆行Re的临界状态:若fNm(0)越大,则表示模糊运动状态motH属于正常行驶Nm的程度越大,当时,模糊运动状态mot为正常行驶Nm;当时,模糊运动状态mot处于正常行驶Nm和向右横穿马路Ra的临界状态;当时,模糊运动状态mot处于正常行驶Nm和向左横穿马路La的临界状态:若fLa(0)越大,则表示模糊运动状态mot0属于向左横穿马路La的程度越大,当时,模糊运动状态mot9为向左横穿马路La;当时,模糊运动状态mot处于向左横穿马路La和正常行驶Nm的临界状态;当时,模糊运动状态Inot处于向左横穿马路La和逆行Re的临界状态:若fRe(0)越大,则表示模糊运动状态Inot0属于逆行Re的程度越大,当时,模糊运动状态mot为逆行Re;当时,模糊运动状态mot。处于逆行RC和向左横穿马路La的临界状态;当时,模糊运动状态mot9处于逆行Re和向右横穿马路Ra的临界状态。本发明实施例还提供了一种终端,包括存储器、处理器及存储在所述存储器上且在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时,实现如上述所述的车辆运动状态的确定方法中的各个步骤。本发明实施例还提供了一种可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时,实现如上述所述的车辆运动状态的确定方法中的各个步骤。本发明与现有技术相比,有益效果在于:本发明实施例通过获取目标车辆在检测区域的检测视频中的位置集合,根据该位置集合中的坐标信息确定该目标车辆的位移矢量,以该位移矢量确定所述目标车辆的运动轨迹,根据该目标车辆的运动轨迹,采用模糊运动状态来确定该目标车辆的运动状态。本发明实施例通过模糊运动状态来衡量目标车辆的运动状态,能够在目标车辆的轨迹时刻变化时,在检测区域中确定目标车辆的运动状态。附图说明图1是本发明实施例提供的车辆运动状态的确定方法的流程图;图2是本发明实施例提供的检测区域的示意图;图3是本发明实施例提供的车辆运动状态的确定系统的结构示意图。具体实施方式为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。图1示出了本发明实施例提供的车辆运动状态的确定方法,包括:SlOL获取目标车辆在检测区域的检测视频中的位置集合:S102,根据所述位置集合中的坐标信息确定所述目标车辆的位移矢量,以所述位移矢量确定所述目标车辆的运动轨迹;S103,根据所述目标车辆的运动轨迹,采用模糊运动状态来确定所述目标车辆的运动状态。下面对本发明实施例进行详细的阐述:在实际应用中,交通场景往往复杂多样,在一个交通场景中往往存在与交通无关的区域,如路边的树木、蓝天等等,为了减少这些区域对交通信息参数的影响,同时提高实时性,本发明实施例在交通场景中根据车道形状划定一个梯形区域用于检测操作,将该区域记为检测区域S,如图2中的阴影区为异常检测区域S,交通场景的左上角设为坐标原点0。a)车辆的位移矢量:本发明实施例通过对交通目标提取和跟踪进而获取目标车辆的运动轨迹。假设在正常交通情况下,运动的目标车辆Obj通过检测区域S的时间为t,其通过S区域的轨迹用它在检测视频中各帧上的位置的集合表示,即:TrajObj=p1,p2,pm=(xl,yl),(x21y2),(xm,ym)其中,(x1,y1)为起点,(xm,ym)为终点。为了便于计算,本实施例采用了从起点指向终点的位移矢量近似模拟该目标的运动轨迹。其中为从原点0指向P1的向量,为从原点0指向Pm的向量,设目标车辆Obj在不同方向上的位移分量为XS和ys,即:根据实际交通情况,当Xs0,说明目标车辆Obj在X轴方向上有运动,可能是车辆正常变换车道或行人/车辆横穿马路等情况;当ysWO,说明目标车辆Obj在y轴正方向上有运动,可能是正常行驶、逆向行车或意外停车。由于直角坐标系中斜率能表达的范围存在局限性,因此采用X轴到的夹角分析位移矢量的方向。设r为的模,则由以下可得B和r的表达式为:设S的下边界为y=L,车流方向沿y轴正方向,本发明实施例讨论的方向以直行方向为准。当ymL说明目标车辆正在或已经驶出检测区域;否则,说明目标车辆未能正常驶出检测区域。b)模糊运动状态:由于目标车辆的轨迹时刻处于变化状态,量化地输出其位移距离和矢量方向难以界定目标车辆的运动状态。为此,本发明实施例采用模糊运动状态来衡量运动的目标车辆的运动状态,设目标车辆Obj的模糊运动状态mot0有如下几种情况:向右横穿马路、正常行驶、向左横穿马路、逆行4种,分别用Ra、Nm,La、Re表示。目标车辆的运动状态Inot对应的隶属度函数如下:从式(1)可以看出,fRa(8)越大,说明InOt属于Ra的程度越大。当时,模糊运动状态为Ra(右横穿);当时,模糊运动状态处于Ra(右横穿)和Nm(正常)的临界状态;当时,模糊运动状态处于Ra(右横穿)和Re(逆行)的临界状态。从式(2)可以看出,fNm(0)越大,说明InOt0属于Nrn的程度越大。当时,模糊运动状态为Nm(正常);当时,模糊运动状态处于Nm(正常)和Ra(右横穿)的临界状态;当时,模糊运动状态处于Nm(正常)和La(左横穿)的临界状态。从式(3)可以看出,fLa(0)越大,说明Inot0属于La的程度越大。当时,模糊运动状态为La(左横穿3当时,模糊运动状态处于S左横穿)和NtnaE常)的临界状态:当时,模糊运动状态处于La(左横穿)和Rc(逆行)的临界状态。从式(4)可以看出,fRe(8)越大,说明mot属于Re的程度越大。当时,模糊运动状态为Re(逆行);当时,模糊运动状态处于Re(逆行)和La(左横穿)的临界状态:当时,模糊运动状态处于Re(逆行)和Ra(右横穿)的临界状态。图3示出了本发明实施例提供的一种车辆运动状态的确定系统,包括:位置获取单元301,用于获取目标车辆在检测区域的检测视频中的位置集合;轨迹获取单元302,用于根据所述位置集合中的坐标信息确定所述目标车辆的位移矢量,以所述位移矢量确定所述目标车辆的运动轨迹:状态确定单元303,用于根据所述目标车辆的运动轨迹,采用模糊运动状态来确定所述目标车辆的运动状态。进一步地,位置获取单元301具体用于:采集道路上预先划定的检测区域的检测视频,所述检测视频中包含有所述目标车辆:获取所述目标车辆在所述检测视频中每一帧图片上的位置,得到所述目标车辆在所述检测视频中的位置集合TrajObj;TrajObj=p1,p2,Pm=(x1,y1),(x2,y2),(xm,ym).其中,(x1,y1)表示起点,(xm,ym)表示终点。进一步地,轨迹获取单元302具体用于:以(x1,y1)表示所述目标车辆行驶的起点,(xm,ym)表示终点,表示所述目标车辆从起点指向终点的位移矢量,即:其中,表示从原点0指向P1的向量,表示从原点0指向Pm的向量,所述目标车辆Obj在不同方向上的位移分量为XS和ys,即:当XsWO时,表示所述目标车辆Obj在X轴方向上有运动;当ys/0时,表示所述目标车辆Obj在y轴正方向上有运动;以X轴到的夹角0分析位移矢量的方向,设r为的模,贝I:所述检测区域S的下边界为y=L,所述检测区域中车流方向沿y轴为正方向,若ym2L,则确定所述目标车辆Obj正在或己经驶出检测区域,否ymL,则确定说明所述目标车辆未能正常驶出检测区域,最终得到所述目标车辆在所述检测区域内的运动轨迹。进一步地,状态确定单元303具体用于:设所述目标车辆Obj的模糊运动状态mot0包括:向右横穿马路Ra、正常行驶Nm、向左横穿马路La和逆行Re;所述目标车辆Obj的运动状态mot对应的隶属度函数包括:若fRa(0)越大,则表示模糊运动状态mot8属于向右横穿马路Ra的程度越大,当或时,模糊运动状态mot0为向右横穿马路Ra:当时,模糊运动状态mot0处于向右横穿马路Ra和正常行驶Nm的临界状态:当时,模糊运动状态mot0处于向右横穿马路Ra和逆行Re的临界状态;若fNm(0)越大,则表示模糊运动状态mot8属于正常行驶Nm的程度越大,当时,模糊运动状态mot0为正常行驶:当时,模糊运动状态mot0处于正常行驶Nln和向右横穿马路Ra的临界状态:当时,模糊运动状态mot0处于正常行驶Nm和向左横穿马路La的临界状态;若fLa(0)越大,则表示模糊运动状态mot属于向左横穿马路La的程度越大,当时,模糊运动状态mot«为向左横穿马路La;当时,模糊运动状态mot«处于向左横穿马路La和正常行驶Nm的临界状态:当时,模糊运动状态mot0处于向左横穿马路La和逆行Re的临界状态;若fRe(8)越大,则表示模糊运动状态mot属于逆行Re的程度越大,当时,模糊运动状态mot8为逆行Re;当时,模糊运动状态mot处于逆行Re和向左横穿马路La的临界状态:当时,模糊运动状态mot0处于逆行Re和向右横穿马路Ra的临界状态。在本申请所提供的几个实施例中,应该理解到,所揭露的方法和装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行.另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需耍选择其中的部分或者全部模块来实现本实施例方案的目的。另外,在本发明各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-OnlyMemory).随机存取存储器(RAM,RandomAccessMemory).磁碟或者光盘等各种可以存储程序代码的介质需要说明的是,对于前述的各方法实施例,为了简便描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其它顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定都是本发明所必须的。在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其它实施例的相关描述。以上为对本发明所提供的-种车辆运动状态的确定方法及系统的描述,对于本领域的技术人员,依据本发明实施例的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本发明的限制。说明书附图y*状态确定单元