欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOCX文档下载  

    信号与系统(应自炉)习题答案第3章习题解.docx

    • 资源ID:853869       资源大小:292.74KB        全文页数:22页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    信号与系统(应自炉)习题答案第3章习题解.docx

    易知(PQ=(P =中2 =(P3 =(P4图321弋(Pn第3章习题解3-1.求以下周期信号的基波角频率为O和周期7。(1) /(/)=Acos4+sin6;(3)/(f)=Acos:+Bsin,;(2) /(/)=Acos2,/-Bsin3r+Csin;(4) /(r)=(sin02;(5)/(r)=e>,;(6)/(r)=(Acos2r-Bsin5r)2;(7)/(r)=Aej,+Bsin6r;3-2:连续时间周期信号/(f)=2+cos(争)+4SinE)。将其表示成复指数傅立叶级数形式,求入,并画出双边幅度谱和相位谱。解:由于/(,)为连续的时间周期信号。由于题易知T=6=-3又/(r)=2+cos(竽)+4sin()即有a0=2a2=1b5=4G=居=E.2加.38故=2+-2jej又闿=E,J其双边幅度谱如图3-2-1所示其相位谱如图3-2-2所示3-3周期电压/(r) = 2 + 2cos t、+ 4 J甸2代"Gw,试画其单边,双边幅度谱和图3-3-1单边幅度谱相位谱。解:由题易知W1T=2C=C=2C,=C3=1其单边幅度谱如图3-3-1故双边幅度谱如图3-3-2所示/(1)=2+2cos(fH)+COSQf)+COSGfJJ',443-3卬广力净卬0吗2吗3吗故有例=7°2=-?=皆T-3-2双F幅度谱其相位谱如图3-3-3所示%3-4如题图3-4所示信号,求指数形式和三角形式的傅里口舐强因-_/4I解:由于工为奇函数故有=0图333相位谱2E=一cos)-ln-0n=2k&N-V-4E1*n=2k+lkNn-2£1=Vcos(7)-1sin(w"“=in(b)a0=,(1-Jdt='UrjoT21n故Zz。)=5÷sin(w)+0.5sin(2vvr)HF-sin(ww)n(C)由于人为偶函数故有bll=0n0n=2kkwN<J-44n=2k+lkeNn°n=2kkeNF.二-2An22n=2k+lkeN(d)由于为偶函数故i=O4A八n、=F(Icos行)n2(e)由于外为偶函数故bn=0=COSn2-1)2(f)全波余弦信号八")为=ICOS(Wof)IWO=r又因为八为偶函数故勿=03-5周期信号的一个周期的前四分之一波形如题图3-5所示,就以下情况画出一个周期内完整的波形。(1) /是t的偶函数,其傅里叶级数只有偶次谐波;(2) /(j是,的偶函数,其傅里叶级数只有奇次谐波;(3) /(才是/的偶函数,其傅里叶级数有偶次谐波和奇次谐波;(4) /(j是,的奇函数,其傅里叶级数只有偶次谐波;(5) 是,的奇函数,其傅里叶级数只有奇次谐波;/(,)是,的奇函数,其傅里叶级数有偶次谐波和奇次谐波。3-6利用信号的各种对称性,判断题图3-6所示各信号的傅里叶级数所包含的分量形式。TQ)0EO-E (OT-A1VWV .T O T2T 7(C)I 0VMKW-T -L .L O L L T t(e)"2 ,A ()I L AG)(7)L4 一/ / 二题图3-6解(a)由于f(t)为偶函数,只含有直流分量和偶次谐波余弦分量。(b)由于f(t)为奇函数,只含有基波分量和奇次谐波正弦分量。(C)由于f(t)为偶函数,只含有基波分量和奇次谐波余弦分量。(d)由f(t)为偶函数,只含有基波分量和奇次谐波余弦分量。(e)由于f(t)为去直流后为奇函数,只含有直流分量和偶次谐波正弦分量。由于f(t)为偶函数,只含有直流分量和偶次谐波余弦分量。(g)由于f(t)为偶谐函数,只含有正弦分量。(h)由于f(t)为奇谐函数,只含奇次谐波分量。3-7求如题图3-7所示信号的傅里叶变换。AF2(w) = -ejwrejwr-Ajvejwr+ejw解:(a)对f(t)求一阶和二阶导数得到A=-2ysin(wr)-2Awcos(wr)-A(t + )f1A-A(t-)2MjwSin(W 7) - 2Acos(w)F1(O) = O(ty=丑4 cosvr) - sa(w)wA(b)对f(t)求一阶与二阶导数得到:-,必+广.月(W) =繁+和(WV)=孙J总理(C)对f(t)求一阶和二阶导数得到2W1 =B(O) = OF(W) =F2(w) -wfFi(w) + wlA- wiAeir2-W1(d)对f(t)求一阶和二阶导数得到3-8:设/(,)一网,试用尸Gy)表示以下各信号的频谱。r(r)+M); /(6-3r)j (3);(l-z)(l-z);t r(r)Jr(2)1+w(r)cosft;0r(/+2)/(/);(6)"加也dt/(r)*(r-3);(10)(r)Jrl2)f()d0(13)g)*Sa(2l)(15),山dt(12)粤AfRi 一2)二二( /(,)(,)(16) (一2)/(。/(T)解:(1)f2(0+/(0=.+/(/)-F(w*FM+FM21(2)1+mf(r)cos(w0)=COS(卬0,)+/Ta)CoS(卬Oa)(3)/(6-30=/-3(r-2)F(-力配,(4)(r+2)(r)=(f(r)+2/(。÷÷jF,(w)+2F(w)/(3)÷÷;呜)(6)jwF(w)dt(7)(1-O(l-/)=/(I-O-(fd-)F(-w)e-v-"F(yaw/(F(Me3(9)ff()dF(0)(w)+F(W)JYjw(10)'f()d加©/HO+F(jw)J-Xjw(11)f',2f()d=-2f,2(l)d62"叫加(OW(W)+Y)Jfj-j2w2(12)可-jwF(w)dt(13) sa(t)÷÷G4(w)2(14) /(r)w(r)F(jw)*-+(vv)2jw(15) dfQT)jwF(-w)e-vdt(16) 。一2)Q)2"3)e-j6F,(w-2)-2F(w-2)3-9先求如题图3-9(a)所示信号/(/)的频谱/(G)的具体表达式,再利用傅里叶变换的性质由F(O)求出其余信号频谱的具体表达式。解:(a)对f(t)求一阶和二阶导数得到(b)由于工(r)="l)故Fl(w)=F(w)e-jw=-(l-jw-e-jw)e-jyvw(C)2=1(-O=(-r+l)(d)(O=/(2-l)=/-(+2)2ej2wF(-j2w)/、/(r)Ozl(e) f4(t)j4/()-lrO(f) /")=z"I)C吊(卬)6一次(g)(0=Ga-l2)3-10利用三种方法求题图3-10所示信号的频谱。解:(a)方法一利用定义方法二利用时域微分性质对f(t)求一阶导数得到方法三利用频域微分性质(b)方法一利用定义方法二利用频域微分性质方法三利用时域微分性质0.5(1+cos*,M<13-11题图3-11所示余弦脉冲信号为/(r)=j°试用以下方法分别求频谱(1)利用傅里叶变换的定义;(2)利用微分特性;(3) /(0=G2()(+cos),利用线性性和频域卷积性质。解:F(W)=J加力3-12三角脉冲力的傅里叶变换为EQ)二等S2(等),求题图3-12所示信号人=力。一专)COS”的傅里叶变换B3)3-13信号如题图3T3所示,设其频谱函数为尸(。),不要求尸(G),求以下各值。(1)F(O);(2)"F(<><w;(未做)3-14如题图3T4所示两门函数:(0cF(j3)=E再),f2(t)F?(j3)=E22Sa(22).(1)画出/=力*力的图形;(2)求/=力(/)*人的频谱函数/(。)。3.15双Sa信号/(r)=®Sa(/)+Sa(4(2r),试求其频谱。解:f(t)=-Sa(wct)+Sawe(t-2)*/FS(w)=24一二2wcwcFSawe(t-2)=-e-23.16画出以下各信号的波形,并求它们的频谱Ek)=。(2) -C)=Gr(f)*Wf);力=(r)*必+幻+MT。)解:/(f)=GVVTF(w)=ESa(-)伙)=G*)*(ff):F(W)=GD;力(f)=Gt(0*(+)+(10)Hrr.*.F(w)=2ESa(一)wswt03.17求以下各信号的频谱的具体表达式10=W:W=W+(-0;£«)=")+/(,+2)解:(1)fl(O=f(t)=e-tu(t)e-1)1 + jw,一初1 + jwg=J-%./(W)=r(2e-2cosvv+2wsinVV)1+卬(3) VF(O=(O-()2.*.F(w)=(we+2sinw+2vvcosvv)(1+卬“)(4) YFf(t-)=-(e-e-iw)1+jw: F(w)=(e-ew)(X+e-jw)e2jw丹一4Q)=当2aw尸(VV)=2-1(e-e)(1+jw)1+jw1+jw3.18用傅里叶变换的对称性,求以下各信号的频谱巫;t./“sin2t_z、令%=4;T有4万<->2Gq(-vv)2t:.Sm2双DG4(-w)e-jwr(r-l)a(2) Y三角形脉冲(1-)(+)-(-)Sa(一)>0;a +t -;VpT解: (1) , GW) 3 tSc(-)t2*÷÷2(1)(w+¼)-(w-h)2%令典=2乃有2乃(SinR)22万(1一同)(卬+2万)一£(卬一2乃)t2即(任江)2C(I+式卬2乃)t2万双边指数信号e-M(FVf<+oo)a+wJ。,-23a+W单边指数信号V(r)-!4+jw624"代卬)(一明RfJ-!H(一卬)a+jtsin3-19证明:Gr(r)*Y4(t-nT)n=_NSin监I2)Sa,<To(未做)3.20求以下各傅里叶变换的原函数(1)F()=u(+<y0)-u(-t0):尸=小;解:.F)=u(+690)-u(-<0)SiflWOfTtl. F()=(3)(a÷jf(+j)(a+j)又+W)",/0=ea,u(t)*e'a,u(t)=J:e3.2l-arw(T)-e-fl(/-r)w(r-)d='""e-ad=tel-r(f0)1求卷积包(6电*为(8S)6tSt解:由题3.20可知:3-22尸(。)的图形如题图3-22所示,求其傅里叶反变换了(f)3.23F()=4S3)cos(2g),求反变换/(r),并画出/(r)的波形。解:5.(昉是矩形脉冲Mr)的傅里叶变换,F()=45fl(O)CoS=2Sa)e2j+2Sa()e2jw.f(t)=2x(t+2)+2x(t-2)1/21/2-101t/«)的波形如图:3.24 系统的单位冲激响应为MZ)=«-“'(/),并设其频谱为H(3)=R(g)+jX().(1) 求宠X(°)(2) 证明R(3)=-!-*X()iX()=一一-*R(G)7t解:3.25 信号力(U人(。的带宽分别为外,电,且例七,则以下信号的带宽分别为多少?假设对以下信号进行理想冲激抽样,所允许的最大抽样间隔丁是多少?(1) 1(r)cost2r(2)1(f)cos(DCt,c»xiW20(4)W*(O21(r)÷301202W*(01(2r-l)(r-2)解:(2)带宽为q,=-L=2-L=LZf至"例(3)带宽为例+<=2-?=生士”2万x+g(4)带宽为g,1=;=2;=丝2(5)带宽为外,1=3=2/-="外(6)带宽为2",=-L=2-=222(7)带宽为g,1=;=2;=丝2外11FCO1C(8)带宽为叫+g,Tv=-=2i=2二,2生2Sf22+g3-26确定以下信号的奈奎斯特频率和奈奎斯特间隔(2) 5a(50r)(2)Sa(IoOf)+S6(80)S(100)+S2(40)f2.27 设力=cos(2)50f),人=CoS(2350f),均按周期7=(l400)s抽样。试问哪个信号可不失真恢复原信号?并画出均匀冲激抽样信号工的波形及其频谱图。解:2.28 题图3-28所示三角波信号/(r)(1)求出其频谱F(G)(3) 是对丁以等间隔一进行抽样所得信号,分析并画出其频谱图死(G)8T(3)将/(f)以周期7进行周期延拓构成周期信号力(。,画出对以等间隔一进行抽样所得8信号力«)的波形和频谱Fps()O解:F(S)=过与,第一频值为零时口=/频谱为F(o)的信号被冲激抽样后,得到的抽样信号,(。的频谱为(3)由题意有角频率q=半T一、(OS =8 S167T3-29 题图3-29所示信号的傅里叶变换为尸(3)2ET(l -COS终,求图示信号)«)的傅里叶变换丫()解:)«)是/(,)以周期T进行延拓构成的周期信号。周期函数M)的傅里叶系数为:月=:M0)l皿例2Ecosn - 4n2)M)的傅里叶级数为:削=火Pnet傅里叶变换为:F() = 2YjF(n)s8=4E之n=-cosn2 -nTJZI=-OO-4n2-n-TJ3-30-3-38未做3-39如题图3-39(a)所示电路,/?=1%0,。=0.1尸,输入电压/(。为周期矩形信号,波形如题图3-39(b)所示,且E=lV,=T2,试求(1)求该电路的频率响应H()=匕"oF(G)(2)稳态时电容两端电压之直流分量、基波、三次谐波、五次谐波分量。粗略画出稳态时电容两端电压c波形。解:(1)由图可知:H()二 4(。)jc_1_IO4+r1+jRcIO4+jjC(2)把周期电压源信号展开为傅里叶级数则卜=T)/(£)展开为:有展开式可以得出:直流分量为:=1时,,2E.22E2基波分重为:sincost=cost2TTtT=3时,Lu,2E.362E6三次谐波分量为:sincos1=cost32T3T=5时,J4t2E,51042EIoTr五次谐波分量为:sincos1=cos152T5T(3)波形图略。3-40LTI系统的输入信号/=sin6m+cos2加,当系统的单位冲激响应分别为以下函数时系统的正弦稳态响应。(1)1(f)=S(4M(2)Zi2(f)=32S(4")Sa(M)解:(1)依题意知,系统函数为H")=(+44)一(公4万),是一个低通滤波器,所以系统响应为,(r)=cos2m系统函数为"13)=(F2(r)=cFa(4r)*iFSa(8t)rI可知其带宽为fm=6,即g=2w=12乃2兀所以系统响应为y(r)=sin6m+cos2t00,汽3-41LTl系统的频率响应如题图3-41所示,求当输入为/¢)=W>-3""'时的输出505G-_22题图3-41M)解:由图可知该系统为低通滤波器F)=Au+-u-易知,只有当频率=-2,1,0,1,2时才能通过滤波器2_.空所以M)=ASeJ2ejnt定属,/?2。传输过程有无时间延迟? 解:此电路的系统函数为v( (Rl + JM R? +H(力料=/(R+L)+ R2 +- J1 1#-万+画+R府要求无失真传输,即为(=,=J (RI R?疗)+ W + Rl R2向丁 _J( 3 y+(/? + &, 令两边对应项系数相等,得 解方程组得凡=R2=1代入L和C的数值,其幅频特性为: C)代入得=k3.42 知电路如题图3-42所示,求该系统的频率响应H(G) = 噢,欲使系统无失真传输信号,确3-43 题图3-43所示网络能否无失真传输信号?假设能,参数应该满足什么条件?n=-2(未做)3.44 如题图3-44所示系统,信号如题图所示,/1(r)=cos(0),人)=35(2豌。,求响应y(r)的频谱函数。解:3.45 如题图3-45所示系统,输入信号的频谱为尸(o),"2(g)=G6(o),试画出信号MUyG)的频谱。解:,F(w)3-46此题可能存在符号标记错误_?试分析题图3-46所示系统中和各点信号的频谱,I并画后厘.谱图I。乩仿*G,J加,-4-3-2-101234W/(f)=S(Khrf),(t)=(t-nTT=0.020n=-(未做)3-47知一系统如题图3-47所示,并且试分别求出在下述鼓励信号作用下,输出信号的频谱。(2)/(r)=Sa(r)cos2r解(1)f(t)=sa(t)÷÷7iG2(w)Y(IW) I城/二z=*1又H1(w)=3G4(w)故F1(w)=3G2(w)(0 = ZWs(2m)W3 44 w-2-10÷hi1(其频谱如图3万=_G2(vv+2)+G2(w-2)其频谱如图Iy(W)I=5G(w+2.5)+G1(W-2.5)(2)/(Z)=sa(t)cos(2t)<r-G2(w)*(w+2)-2r"TCwF(w)=yG2(w+2)+G2(w-2)AFI(W) 34/23F(w)=Gi(w+1.5)+G1(w-1.5)>(w+2)÷(w-2)Y(W)=F2(W)H2(W)3乃Iy(W)I=yG1(w+1.5)+G1(W-1.5)3-48一理想低通滤波器的频率响应为假设输入(f)=二包cos5f,求该系统的输出y(f)。解:由f(t)=-cos(5r)=3sa(3f)cosO)tF(w)=G6(W)*(w+5)+(w-5)H0w)2J=G4(vv+4)e;2+G4(w-4)e,2IlIlJJll.2-8-6-420Y(WlG8W3-49在题图3-49所示系统中,理想低通滤波器的频率响应为,j二IIIIIIIIA且。o>>4,-8-6-4-2024(8W(1)求虚框所示系统的冲激响应(2)假设输入信号为/«)=则"DCOSGZV),求系统输出信号M')1.。/(3)假设输入信号为/«)=汕MSinLv),求系统输出信号)G)。LG/(4)虚框所示系统是否线性时不变系统?解:(1)由冲激响应的定义可知由于6(卬+%)和5(W-WO)是在频率为-WO和Wo的一个冲激。而H(W)为一个频率为wc的一个低通滤波器。但由于w.故有H(w)=0(2)/(Z)=56z2(wf7)cs(vvor)/(/)=5a2(w)Sin(W0Z)=0(4)是线性时不变系统3-50如题图3-50所示的调幅系统,当输入和载波信号s(f)加到乘法器后,其输出y(f)=该系统是线性的吗?(1)如果/(f)=5+2cosl0r+3cos20r,s(f)=cos200f,试画出y(f)的频谱图。如果/(,)=予,s(f)=cos3f,试画出M)的频谱图3-51题图3-51(a)所示系统,带通滤波器的频率响应如图3-51(b)所示,其相频特性9(时=0,假设输入/(r)=M畛,s(f)=cosl000f,求输出信号)。2t3-52题图3-52所示为正交幅度调制原理框图,其可以实现正交多路复用。两路载波信号的载频牝相同,但相位相差两路调制信号工和力(。都为带限信号,且最高频率为例”,假设试证明%=力(Uy2()=(0

    注意事项

    本文(信号与系统(应自炉)习题答案第3章习题解.docx)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开