欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOC文档下载  

    高等数学下知识点总结材料-高等数学下知识点总结材料.doc

    • 资源ID:8828       资源大小:970.50KB        全文页数:11页
    • 资源格式: DOC        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高等数学下知识点总结材料-高等数学下知识点总结材料.doc

    文档高等数学下知识点主要公式总结第八章 空间解析几何与向量代数1、 二次曲面1) 椭圆锥面:2) 椭球面: 旋转椭球面:3) 单叶双曲面: 双叶双曲面:4) 椭圆抛物面: 双曲抛物面马鞍面:5) 椭圆柱面: 双曲柱面:6) 抛物柱面:(二) 平面与其方程1、 点法式方程: 法向量:,过点2、 一般式方程:截距式方程:3、 两平面的夹角:, ;4、 点到平面的距离:(三) 空间直线与其方程1、 一般式方程:2、 对称式点向式方程: 方向向量:,过点3、 两直线的夹角:, ;4、 直线与平面的夹角:直线与它在平面上的投影的夹角, ;第九章 多元函数微分法与其应用1、 连续:2、 偏导数: ;3、 方向导数: 其中为的方向角。4、 梯度:,如此。5、 全微分:设,如此(一) 性质1、 函数可微,偏导连续,偏导存在,函数连续等概念之间的关系:偏导数存在函数可微函数连续偏导数连续充分条件必要条件定义122342、 微分法1) 复合函数求导:链式法如此 假如,如此 ,(二) 应用1) 求函数的极值 解方程组 求出所有驻点,对于每一个驻点,令, 假如,函数有极小值, 假如,函数有极大值; 假如,函数没有极值; 假如,不定。2、 几何应用1) 曲线的切线与法平面曲线,如此上一点对应参数为处的切线方程为:法平面方程为:2) 曲面的切平面与法线曲面,如此上一点处的切平面方程为: 法线方程为:第十章 重积分(一) 二重积分 :几何意义:曲顶柱体的体积1、 定义:2、 计算:1) 直角坐标, , 2) 极坐标 , (二) 三重积分1、 定义:2、 计算:1) 直角坐标 -“先一后二 -“先二后一2) 柱面坐标,3) 球面坐标(三) 应用曲面的面积:第十一章 曲线积分与曲面积分(一) 对弧长的曲线积分1、 定义:2、 计算:设在曲线弧上有定义且连续,的参数方程为,其中在上具有一阶连续导数,且,如此(二) 对坐标的曲线积分1、 定义:设 L 为面从 A 到B 的一条有向光滑弧,函数,在 L 上有界,定义,.向量形式:2、 计算:设在有向光滑弧上有定义且连续,的参数方程为,其中在上具有一阶连续导数,且,如此3、 两类曲线积分之间的关系:设平面有向曲线弧为,上点处的切向量的方向角为:,如此.(三) 格林公式1、 格林公式:设区域 D 是由分段光滑正向曲线 L 围成,函数在D 上具有连续一阶偏导数,如此有2、为一个单连通区域,函数在上具有连续一阶偏导数,如此曲线积分在与路径无关(四) 对面积的曲面积分1、 定义:设为光滑曲面,函数是定义在上的一个有界函数,定义 2、 计算:“一单二投三代入,如此(五) 对坐标的曲面积分1、 定义:设为有向光滑曲面,函数是定义在上的有界函数,定义 同理, ;2、 性质:1,如此计算:“一投二代三定号,在上具有一阶连续偏导数,在上连续,如此,为上侧取“ + , 为下侧取“- .3、 两类曲面积分之间的关系:其中为有向曲面在点处的法向量的方向角。(六) 高斯公式1、 高斯公式:设空间闭区域由分片光滑的闭曲面所围成, 的方向取外侧, 函数在上有连续的一阶偏导数,如此有或2、 通量与散度通量:向量场通过曲面指定侧的通量为:散度:(七) 斯托克斯公式1、 斯托克斯公式:设光滑曲面 S 的边界 G是分段光滑曲线, S 的侧与 G的正向符合右手法如此, 在包含å 在的一个空间域具有连续一阶偏导数,如此有为便于记忆, 斯托克斯公式还可写作:2、 环流量与旋度环流量:向量场沿着有向闭曲线G的环流量为旋度:第十二章 无穷级数(一) 常数项级数1、 定义:1无穷级数:局部和:,正项级数:,交织级数:,2级数收敛:假如存在,如此称级数收敛,否如此称级数发散3条件收敛:收敛,而发散;绝对收敛:收敛。2、 性质:1) 改变有限项不影响级数的收敛性;2) 级数,收敛,如此收敛;3) 级数收敛,如此任意加括号后仍然收敛;4) 必要条件:级数收敛.注意:不是充分条件!3、 审敛法正项级数:,1) 定义:存在;2) 收敛有界;3) 比拟审敛法:,为正项级数,且 假如收敛,如此收敛;假如发散,如此发散.4) 比拟法的推论:,为正项级数,假如存在正整数,当时,而收敛,如此收敛;假如存在正整数,当时,而发散,如此发散. 5) 比拟法的极限形式:,为正项级数,假如,而收敛,如此收敛;假如或,而发散,如此发散.6) 比值法:为正项级数,设,如此当时,级数收敛;如此当时,级数发散;当时,级数可能收敛也可能发散.7) 根值法:为正项级数,设,如此当时,级数收敛;如此当时,级数发散;当时,级数可能收敛也可能发散.8) 极限审敛法:为正项级数,假如或,如此级数发散;假如存在,使得,如此级数收敛.交织级数:莱布尼茨审敛法:交织级数:,满足:,且,如此级数收敛。任意项级数:绝对收敛,如此收敛。常见典型级数:几何级数: ; p -级数:(二) 函数项级数1、 定义:函数项级数,收敛域,收敛半径,和函数;2、 幂级数:3、 收敛半径的求法:,如此收敛半径 4、 泰勒级数展开步骤:直接展开法1) 求出;2) 求出;3) 写出;4) 验证是否成立。间接展开法:利用函数的展开式1;2;3;4;56785、 傅里叶级数1) 定义:正交系:函数系中任何不同的两个函数的乘积在区间上积分为零。傅里叶级数:系数:2) 收敛定理:(展开定理)设 f (x) 是周期为2p的周期函数,并满足狄利克雷( Dirichlet )条件:1) 在一个周期连续或只有有限个第一类连续点;2) 在一个周期只有有限个极值点, 如此 f (x) 的傅里叶级数收敛 , 且有3) 傅里叶展开:求出系数:;写出傅里叶级数;根据收敛定理判定收敛性。11 / 11

    注意事项

    本文(高等数学下知识点总结材料-高等数学下知识点总结材料.doc)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开