欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOCX文档下载  

    08多边形的内角和教案.docx

    • 资源ID:915733       资源大小:46.54KB        全文页数:3页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    08多边形的内角和教案.docx

    多边形的内角和一、教学目标(一)知识与技能:掌握多边形的内角和的计算方法,并能用内角和知识解决一些较简单的问 题.(二)过程与方法:通过多边形内角和计算公式的推导,培养学生探索与归纳能力.(三)情感态度与价值观:通过学生间交流、探索,进一步激发学生的学习热情,求知欲望, 养成良好的数学思维品质.二、教学重点、难点重点:理解多边形内角和公式的推导过程,并掌握多边形的内角和与外角和公式.难点:灵活运用多边形的内角和与外角和定理解决有关问题.三、教学过程思考三角形的内角和等于180° ,正方形、长方形的内角和都等于,任意一个四边形 的内角和是否也等于360°呢?在四边形ABCD中,连接对角线AC,则四边形ABCD被分为AABC和AACD两个三角形.由此可得NDAB+ NB+ NBCD+ ZD= Z1 + Z2+ NB+ N3+ Z4+ ZD= (N1 + NB+N3) + (N2+N4+ND) Zl + ZB+Z3=180o , Z2+Z4+ZD=l80oJ ZDAB+ ZB+ ZBCD+ ZD= 180° +180° =360°即四边形的内角和等于360° .探究边数3456n从一个顶点出发 的对角线的条数0123n-3上述对角线分成 的三角形的个数1234-2多边形的内角和180°180o×2 =360°180o×3 =540°180o×4 =720°180o× (-2)归纳一般地,从边形的一个顶点出发,可以作S-3)条对角线,它们将边形分为(-2) 个三角形,边形的内角和等于180° ×(-2).这样就得出了多边形内角和公式:边形的内角和等于Gl2)X180° .把一个多边形分成几个三角形,还有其他分法吗?由新的分法,能得出多边形的内角和 公式吗?例I如果一个四边形的一组对角互补,那么另一组对角有什么关系?解:如图,在四边形ABCD中,ZA+ZC=180o, ZA+ZB+ZC+ZD= (4-2) × 180° =360°,NB+ND=360° 一(NA+NC)=360° 780° =180°这就是说,如果四边形的一组对角互补,那么另一组对角也互补.例2如图,在六边形的每一个顶点处各取一个外角,这些外角的和叫做六边形的外角和.六 边形的外角和等于多少?可以得到同样的结果吗?解:六边形的任何一个外角加上与它相邻的内角都等于180° . 因此六边形的6个外角加上与它们相邻的内角,所得总和等于 6×180o .这个总和就是六边形的外角和加上内角和.所以外角和等于总 和减去内角和,即外角和等于6×180o -(6-2) × 180o =2× 180° =360°思考如果将例2中的六边形换为边形。是不小于3的任意整数), 边形的外角和=X180° -Gr形X180°=MXI800 -n×1800 +2×180o=2×180° =360° 多边形的外角和等于360°如图,从多边形的一个顶点A出发,沿多边形的各边走 过各顶点,再回到点A,然后转向出发时的方向.在行程中 所转的各个角的和,就是多边形的外角和.由于走了一周, 所转的各个角的和等于一个周角,所以多边形的外角和等于 360° .练习1.求下列图形中X的值:解:(1)户户 140+90=360,解得 x=65(2) 90+120+150+2x+x= (5-2) × 180,解得 尸60(3) 75+120+80+(180-) =360,解得 x=952.一个多边形的各内角都等于120° ,它是几边形? 解法一:各内角都等于120°:.每个外角都是60° 边数为:360o ÷60o =6即它是六边形.解法二:设它是边形.120= 5-2) X 180解得,n=6即它是六边形.3.一个多边形的各内角和与外角和相等,它是几边形?解:设它是边形,依题意得,(n-2)×180=360解得,=4即它是四边形.课堂小结1.本节课你有哪些收获? 2.还有没解决的问题吗?四、教学反思本节课先引导学生用分割的方法得到四边形内角和,再探究多边形的内角和,然后采用 完全开放的探究,每步探究先让学生尝试,把学生推到主动位置,放手让学生自己学习,教 学过程主要靠学生自己去完成,尽可能做到让学生在“活动”中学习,在“主动”中发展, 在“合作”中增知,在“探究”中创新.要充分体现学生学习的自主性:规律让学生自主发 现,方法让学生自主寻找,思路让学生自主探究,问题让学生自主解决.

    注意事项

    本文(08多边形的内角和教案.docx)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开