第二十讲三角向量综合应用.docx
第二十讲三角函数与平面向量的综合应用【基础自测】已知角终边上一点P(4,3),则1.2.3.COSe+)Sin(一-)族号不丽5的值为已知yU)=sin(x+仍+5cos(+8)的一条对称轴为y轴,且9(0,),则。=如图所示的是函数/)=4Sin(GX+9)+8(A>O,>0,M(,号)图象的一部分,则火X)的解析式为4 .如图,正方形ABC。的边长为1,延长BA至E,使AE=I,连接EC、ED,则SinNCE£>=.5 .如图,在梯形ABCO中,ADC,AD-LAB,AO=I,BC=2,AB=3,P是Be上的一个动点,当历萩取得最小值时,BP=【例题讲解】题型一三角恒等变换【例11、人九3兀设铲"<p、sinacos2a÷I求一tana的值.练习:已知COSM一袭)+sinct则Sjn(a+V)题型二三角函数的图象与性质【例2】已知函数次幻=ASin堂+,xR,A>O,O<<多y=兀O的部分图象如图所示,P、。分别为该图象的最高点和最低点,点P的坐标为(1,A).(1)求人彳)的最小正周期及的值;(2)若点R的坐标为(1,0),NPRQ=争,求A的值.练习:已知函数危)=AsinGX+8CoSOt(A,B,G是常数,>0)的最小正周期为2,并且当X=W时,TWmax=2.(1)求/箝的解析式;71231(2)在闭区间7,工上是否存在y的对称轴?如果存在,求出其对称轴方程:如果不存在,请说明理由.题型三三角函数、平面向量、解三角形的综合应用【例3】已知向量/n=(5sin本1),=(COS芯,cos?(1)若力=1,求COS停一人)的值;(2)记凡r)=m小在AABC中,角A,B,C的对边分别是,b,c,且满足Q0-c)COSB=AoSC,求函数/(八)的取值范围.练习:在aABC中,角A,B,C的对边分别为mb,c,且Iga-Igb=Igcos8IgcosAWO.判断AABC的形状;(2)设向量m=(2,b),n=(at3b),且帆_L,(m+)(-m)=14,求a,b,C的值.【巩固提高】1.2.3.4.5.6.7.A8C中,AB边的高为CZ),若m=。,CA=b,ab=O,=1,ft=2,则废)等于A.-33c5a5b)44d55z,已知向量=(2,sinx),b=(cos2%,2cosx),则函数/(x)="力的最小正周期是()A.B.C.2D.4己知,b,C为aABC的三个内角A,B,C的对边,向量雁=(小,-I),=(cos,sinA).若且cos3+力COSA=CSinC,则角A,8的大小分别为(),x2rA不3B亍CJ不D.?J函数y=2sin管一5(OWxW9)的最大值与最小值之和为()A.2-3B.0C.-1D.-l-3在4ABC中,若=3,b=®Z=j,则NC的大小为.在直角坐标系Xoy中,已知点A(1,2),8(2CoSx,-2cos2x),C(cosl),其中x0,若靠_L灰:,则X的值为.(1)若位1=1正I,求角a的值;(2)若Ab诙二一1,求2sir+sin 2a1 ÷tan a的值.已知4,B,C的坐标分别为A(3,0),8(0,3),C(cos,sina),af号).8.设锐角三角形ABC的内角A,B,C的对边分别为mb,c,a=2bsnA.(1)求3的大小;(2)求cosA÷sinC的取值范围.