欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOCX文档下载  

    11-5变量间的相关关系、统计案例-2024.docx

    • 资源ID:962861       资源大小:209.49KB        全文页数:26页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    11-5变量间的相关关系、统计案例-2024.docx

    11.5变量间的相关关系、统计案例基础篇考点一变量间的相关关系1.(2023届广东东莞四中月考,5)对四组数据进行统计,获得以下散点图,关于其相关系数的比较,正确的是相关系数为0相关系数为5 1015 20 25 3035 相关系数为GO 5b505050A.r2<r4<O<r3<r1 C.4<r2<O<3<r1 答案AO5101520253035相关系数为小B.r2<r4<O<r1<r3D.4<2<0<ri<32.(多选)(2023届山东潍坊五县联考,10)下列说法正确的是()A.经验回归宜线,=bx+2至少经过样本点数据中的一个点B.若经验回归直线方程为,=l.h>5,则当无每增大一个单位时,J增大1.1个单位C.设两个变量x,y之间的线性相关系数为八则IrI=I的充要条件是成对数据构成的点都在经验回归直线上D.在残差的散点图中,残差分布的水平带状区域的宽度越窄,其模型的拟合效果越好答案CD3. (2020课标I,文5,理5,5分)某校一个课外学习小组为研究某作物种子的发芽率y和温度M单位:)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(即,y)G=I,2,.,20)得到下面的散点图:榔80%低60%20%0贝40%1()2()3()40温度汽:由此散点图,在Ioe至40°C之间,下面四个回归方程类型中最适宜作为发芽率),和温度X的回归方程类型的是B.y=a+bxlD.y=a+bn xA,.y=a+bxC.y=a+be答案D4. (2017山东理,5,5分)为了研究某班学生的脚长M单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y与X之间有线性相1010关关系,设其回归直线方程为y=bx+.已知£=i为=225Ni=Iy,=600,6=4.该班某学生的脚长为24,据此估计其身高为答案C5. (多选)(2022山东济宁一中开学考试,10)给出以下四个说法,其中正确的说法是()A.如果由一组样本数据C,y),G"2),,)得到经验回归方程)=晨+2,那么经验回归直线至少经过点(x,y),但,2),,(M中的一个B.在回归分析中,用决定系数N来比较两个模型拟合效果,必越大,表示残差平方和越小,即模型的拟合效果越好C在经验回归方程,=-0.5x+0.7中,当解释变量X每增加一个单位时,响应变量,平均增加0.5个单位D.若变量y和X之间的相关系数为l0.9872,则变量),和X之间的负线性相关很强答案BD6.(2022全国乙,理19,文19,12分)某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:m2)和材积量(单位:?),得到如下数据:样本号iI2345678910总和根部横截面积M0.040.060.040.080.080.050.050.070.070.060.6材积量H0.250.400.220.540.510.340.360.460.420.403.9101010并计算得i=xf=0.038,i=1K=1.6158,l=1孙=0.2474.估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);t= (j-)(yj-y)yt= (Xt-X)2 t= (y-y)2现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186m?.己知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.附:相关系数I一等刃yi=(Xt-X)2=(y(-y)2L8961.377.解析(1)估计该林区这种树木平均一棵的根部横截面积为土=工=0.06(m>平均一棵的材积量为歹=治0.39(m)IOEi=I (XL 幻 Sl 文)IOI 10IOi= (.×i-×)2 (y-y)2(2)样本相关系数-幻,一/=TJi=(X1-X)2i(yi-y)210i=勺"-10行(1xf-10x2)(yf-10y2)0.2474-10x0.06x0.39(0.038-10×0.062)(1.6158-10×0.392)0.013 40.01340.0134CCrJ-0.97.0.002×0.09480.01L8960.01377即该林区这种树木的根部横截面积与材积量的样本相关系数约为0.97.设这种树木的根部横截总面积为X11总材积量为Km3,则=则Y=等=186X,39zzl2090.06所以该林区这种树木的总材积量的估计值为1209n?.7.(2020课标II,文18,理18,12分)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(H,y)(i=l,2,20),其中H和y分别表示第i个样区的植物覆盖面积(单位:公顷)和202020这种野生动物的数量,并计算得£=1为=60E=Iyi=200Ni=I(疗2020X)2=80,三1(yi-y)2=9OooNi=I(Xm)(M9)=800.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘地块数);求样本(xl,M)G=1,2,.»20)的相关系数(精确到0.01);根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数Kl翼(XLWE,L414.Ji=(Xi-X)2i=1(yi-y)220解析(1)由已知得样本平均数歹=/i=y=60,从而该地区这种野生动物数量的估计值为60x200=12000.样本U,y)(仁1,2,20)的相关系数2020£i=1QL幻(九一歹)_ri=(XL君(一歹)_800_2094I2020I202080×9OOO3-,Ji=(ATi-X)2Zj=I(yi-y)2JEi=I(l-)2l=(yi-y)2(3)分层抽样:根据植物覆盖面积的大小对地块分层,再对200个地块进行分层随机抽样.理由如下:由知各样区的这种野生动物数量与植物覆盖面积有很强的正相关关系.由于各地块间植物覆盖面积差异很大,从而各地块间这种野生动物数量差异也很大,采用分层随机抽样的方法较好地保持了样本结构与总体结构的一致性,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计.考点二独立性检验1.(2021全国甲,文17,理17,12分)甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:I一级品I二级品I合计甲机床15050200乙机床12080200合计270130400(D甲机床、乙机床生产的产品中一级品的频率分别是多少?能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附.Kl=MQd-bc)2(Q+b)(c+d)(+c)(b+d)'P (K2次)0.050 0.010 0.0013.8416.63510.828解析(1)因为甲机床生产的200件产品中有150件一级品,所以甲机床生产的产品中一级品的频率为黑=因为乙机床生产的200件产品中有120件一级品,所以乙机床2004生产的产品中一级品的频率为黑=I根据2x2列联表中的数据,得K三丝芸):“山、(+b)(c+d)(+c)(b+d)="誓等竟著=嘿10256,因为1°256>6635,所以有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异.2.(2022全国甲文,17,12分)甲、乙两城之间的长途客车均由A和8两家公司运营.为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:准点班次数未准点班次数A24020B21030(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?附R=Mad一八产叩(Q+b)(c+d)(+c)(b+d)'P(K2X)0.1000.050 0.0102.7063.8416.635解析(1)由题意可得A公司长途客车准点的概率P尸兽=三,B公司长途客车准点的ZoO13概率P=%=Z2408(2)因为/2=500X(240X30-20X210)22.706,450×50×240×260所以有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关.3.(2020新高考I,19,12分)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM”和SO?浓度(单位:UgZm)得下表:×so2PM0,50(50,150(150,4750,3532184(35,756812(75,13710(1)估计事件“该市一天空气中PM”浓度不超过75,且S02浓度不超过150”的概率;根据中的列联表,判断是否有99%的把握认为该市一天空气中PM25浓度与SO2浓度有关.附.心=(d-bc)2H(Q+b)(c+d)(+c)(b+d)'P(K1>lc)0.0500.0100.001k3.8416.63510.828解析(1)根据抽查数据,该市100天的空气中PM25浓度不超过75,且SO2浓度不超过150的天数为32+18+6+8=64,因此,该市一天空气中PM”浓度不超过75,且SCh浓度不超过150的概率的估计值为益=0.64.根据抽查数据,可得2×2列联表:SO2PM250,150(150,4750,756416(75,1151010根据(2)的列联表得<2=100x(64x10-16x10)2q748480×20×74×26由于7.484>6.635,故有99%的把握认为该市一天空气中PM”浓度与SCh浓度有关.4. (2023届长沙一中月考二,20)某芯片制造企业使用新技术对某款芯片进行试生产.在试产初期,该款芯片生产有四道工序,前三道工序的生产互不影响,第四道是检测评估工序,包括智能自动检测与人工抽检.在试产初期,该款芯片的批次“生产前三道工序的次品率分别为P,P2,P3=605958求批次M芯片的次品率Pw第四道工序中智能自动检测为次品的芯片会被自动淘汰,合格的芯片进入流水线并由工人进行抽查检验.已知批次M的芯片智能自动检测显示合格率为98%,求工人在流水线进行人工抽检时,抽检一个芯片恰为合格品的概率.该企业改进生产工艺后生产了批次N的芯片.某手机生产厂商获得批次M与批次N的芯片,并在某款新型手机上使用.现对使用这款手机的用户回访,对开机速度进行满意度调查.据统计,回访的100名用户中,安装批次M的有40人,其中对开机速度满意的有30人;安装批次N的有60人,其中对开机速度满意的有58人.依据«=0.005的独立性检验,能否认为芯片批次与用户对开机速度满意度有关?n(ad-bc)2(Q+b)(c+d)(Q+c)(b+d)a0.10().05().0100.0050.(X)lXa2.7063.8416.6357.87910.828解析(1)批次用芯片的次品率为Pjw=I-(I-Pi)(I-P2)(I-P3)=1-××=OU595oNU设批次M的芯片智能自动检测合格为事件A,人工抽检合格为事件8,由已知得P(八)=券,P(48)=1Pm=弓=焉则工人在流水线进行人工抽检时,抽检一个芯片恰为合格品为事件8A,P(BH)=需=19x100=95209898,(2)零假设为Ho:芯片批次与用户对开机速度满意度无关.由数据可建立2×2列联表如下:(单位:人)开机速度满意度芯片批次MN合计不满意10212满意305888合计4060100根据列联表得2=11(dfc)2=100×(10x58-2×30)(+b)(c+d)(+c)(b+d)-40×60×12×88因此,依据=0.005的独立性检验,我们推断HO不成立,即能认为芯片批次与用户对开机速度满意度有关.此推断犯错误的概率不大于0.005.5. (2020课标I11,18,12分)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次量等级L0,200(200,400(400,6001(优)216252(良)510123(轻度污染)6784(中度污染)720(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2X2列联表,并根据列联表,判断是否有95就l把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.人次400人次400空气质量好空气质量不好附R=n(ad-bc)2(+b)(c+d)(+c)(b+dyP(K2A)k0.0500.0100.0013.8416.63510.828解析(1)由所给数据,该市一天的空气质量等级为1,2,3,4的概率的估计值如表:空气质量等级1234概率的估计值0.430.270.210.09一天中到该公园锻炼的平均人次的估计值为磊X(IooX20+300x35+500x45)=350.根据所给数据,可得2x2列联表:人次400人次>400空气质量好3337空气质量不好228根据列联表得ioo×(33×8-22×37)5.82O.由于5.820>3.841,故有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.6. (2023届河北邯郸摸底,19)暑假期间,某学校建议学生保持晨读的习惯,开学后,该校对高二、高三随机抽取200名学生(该学校学生总数较多),调查日均晨读时间,数据如表:日均晨读时间/分钟0,10)10,20)20,30)30,40)40,50)50,60人数51025505060将学生日均晨读时间在30,60上的学生评价为“晨读合格”.(1)请根据上述表格中的统计数据填写下面2x2列联表,依据=0.05的独立性检验,能否认为“晨读合格”与年级有关?晨读不合格晨读合格合计高二高三15100合计将上述调查所得到的频率视为概率来估计全校的情况,现在从该校所有学生中,随机抽取2名学生,记所抽取的2人中晨读合格的人数为随机变量求的分布列和数学期望.参考公式如g+w鬻瑟装+4其中”临界值表:a0.10.050.01().0050.001Xa2.7063.8416.6357.87910.828解析(1)列联表如下:晨读不合格晨读合格合计高二2575100高三1585100合计40160200*三三三25<3W,所以依据=0.05的独立性检验,不能认为“晨读合格”与年级有关.由题意,知学生晨读合格的概率为黑=与易知46(2,3,所以%=°)=*(9飞)2=喜%=1)=吐(»©=*%=2)=0(VG)°=祟E的分布列为012P1816252525所以£©=Ox*+lX祗+2=*综合篇考法一经验回归方程的求解与应用1 .(多选)(2022重庆秀山高级中学月考,10)已知变量x,y之间的经验回归方程为J=-0.7x+10.3,且变量x,y之间的一组相关数据如表所示,则下列说法正确的是()X681012y632A.变量X,y之间成负相关关系B.当x=20时,,=-3.7C.n=4D.该经验回归直线必过点(9,4)答案ABD2 .(2022山东潍坊摸底,14)已知关于y的一组数据:X1m345y0.50.6n1.41.5根据表中数据得到的经验回归方程为J=O.28+0.16,则-0.28Z的值为.答案0.443 .(2023届广东普宁华美实验学校月考,19)研究显示,越来越多的上班族下班后通过慢跑强身健体,慢跑属于一种有氧运动,可以消耗人体大量热量,坚持慢跑可以促进新陈代谢,增加肺活量以及增强心脏功能,提升人体免疫力,因此深受青年人喜爱.下图统计了小明这100天每天慢跑的时间情况(单位:分钟).(1)求?的值.(2)小明的同事小强本月前7次慢跑的时间情况如表.由散点图可知,小强的慢跑次数X和慢跑时间y(单位:分钟)之间成线性相关.次数X1234567慢跑时间y(单位:分钟)15182723202936求y关于X的经验回归方程,=bx+其中瓦:使用分数形式表示;根据中的运算结果预测小强第9次的慢跑时间是否会超过小明这I(X)天慢跑的平均时间.参考公式:在经验回归方程J:中,b=EiGJxL-(外一刃,a=y-bx.i=(%刈2解析(1)ft®,W(0.005+0.012+n+0.034+0.015+0.003)×10=1,解得n=0.031.(2)依题意,知元=1+2+3+4+5+6+7.15+18+27+23+20+29+36=4,y=24,7i=U-x)(yi-y)=(-3)×(-9)+(-2)X(-6)+(-1)×3+1×(-4)+2×5+3×12=78,7i=(Xi-%)2=(-3)2+(-2)2+(-l)2+l2+22+32=28,则,=i=,S元)(Ji一刃=哈力=歹一菽=24-碧x4=多故所求经验回归方程为,=(XL可1414739190XH.147小明这100天慢跑的平均时间为5×0.05+15×0.12+25×0.31+35×0.34+45×0.15+55×0.03=30.1,将x=9代入,=务十/中,得,=工X9+y37.93>30.1,故可以预测小强第9次的慢跑时间会超过小明这100天慢跑的平均时间.4.(2023届浙江嘉兴一中期中,20)根据中国海洋生态环境状况公报,从2017年到2021年全国直排海污染源中各年份的氨氮总量y(单位:千吨)与年份的散点图如图.V12:10-*8-6一.4-2-O2()172()182019202020214记年份代码为Xa=I,2,3,4,5),=p对数据处理后得:yt5*i=l5y;i=l5i=l孙5i=l砂,60.51.52107617(1)根据散点图判断,模型)=bx+与模型产哪一个适宜作为),关于X的回归方程?(给出判断即可,不必说明理由)根据(1)的判断结果,建立y关于X的回归方程,并预测2022年全国直排海污染源中的氨氮总量(计算结果精确到整数).参考公式:回归方程,=vx+£中斜率和截距的最小二乘估计公式分别为C=%=QL君(-7)-»=1皿一位7-n-n9-yVX.i=(×i-×)2=xj-nx2解析(1)根据散点图的趋势,可知模型适宜作为y关于X的回归方程.(2)因为;=温T匚旦=8,且2=歹一dt=2ii=t?-5t2所以y关于,的回归方程为J=8+2,即y关于X的回归方程为,=2,2022年对应的年份代码为x=6,所以,3,故预计2022年全国直排海污染源中的氨氮总量为3千吨.5.(2023届广州仲元中学月考,20)随着时代的不断发展,社会对高素质人才的需求不断扩大,我国本科毕业生中考研人数也不断攀升,2020年的考研人数是341万人,2021年的考研人数是377万人.某省统计了该省其中四所大学2022年的毕业生人数及考研人数(单位:千人),得到如下表格:大学A大学8大学C大学。大学2022年毕业生人数%(千人)76542022年考研人数y(千人)0.50.40.30.2(1)已知),与X具有较强的线性相关关系,求),关于X的经验回归方程,=bx+;(2)假设该省对选择考研的大学生每人发放0.5万元的补贴.若该省E大学2022年毕业生人数为8千人,估计该省要发放补贴的总金额;若A大学的毕业生中小浙、小江选择考研的概率分别为p,3p-l,该省对小浙、小江两人的考研补贴总金额的期望不超过0.75万元,求p的取值范围.参考公式:;=晨Ttg与)(乂一刃=y-bx.=(×i-x)2i=xf-nx2IfjJl2/1t+HFi-5三-4+5+6+7UU0.2+0.3+0.4+0.5八CU解析由题意得X=-=5.5,y=0.35,444又i=7×0.5+6×0.4+5×0.3+4×0.2=8.2,4i=1Xiyi-4xy=8.2-4×5.5×0.35=0.5,4Yi=f=72+62+52+42=126,49'i=×i4x=126-4×5.52=5,J=屋产3=竺=o.,i=×l25,.q=9一氏0.35-0.1x5.5=0.2,故y关于X的经验回归方程为y=0.Ix-0.2.(2)将x=S代入,=0.lx-0.2,得J=O.1×8-0.2=0.6,估计该省要发放补贴的总金额为0.6×lOooXO.5=300(万元).设小浙、小江两人中选择考研的人数为X,则X的所有可能值为0,1,2.P(X=O)=(l-p)(2-3p)=3r-5H-2,P(X=l)=(l-p)(3p-1)+p(2-3P)=-6p2+6p-1,P(X=2)=p(3P-1)=3p2-p,.*.E(X)=0×(3p2-5p+2)+(-6p2+6?-1)×1+(3p2-p)×2=4p-1,E(0.5X)=0.5×(4p-l)0.75,解得展,又03p-ll,1/12*3P?p故P的取值范围为L,3考法二独立性检验的应用1 .(2023届重庆质量检测,18)某大型企业组织全体员工参加体检,为了解员工的健康状况,企业相关工作人员从中随机抽取了4()人的体检报告进行相关指标的分析,按体重“超标”和“不超标”制成2x2列联表如下:超标不超标合计男1620女15合计附/=Mad*)?n=a+h+c+d1-×(+b)(c+d)(+c)S+d)''a0.1().050.010.0050.(X)lXa2.7063.8416.6357.87910.828完成题中的2x2列联表,并根据小概率值a=0.001的独立性检验,能否认为该企业员工体重是否超标与性别有关?(2)若以样本估计总体,用频率作为相应事件的概率.现从该大型企业的男、女员工中各随机抽取一名员工的体检报告,求抽到的两人中恰有一人体重超标的概率.解析(1)零假设为儿:体重是否超标与性别无关.依题意可得2x2列联表如下:超标不超标合计男16420女51520合计211940所以T三三230828=s根据小概率值=0.001的独立性检验,没有充分证据推断仇成立,因此可以认为从不成立,即认为该企业员工体重是否超标与性别有关.(2)由题意知,从男员工中随机抽取一人,体重超标的概率为最不超标的概率为从女员工中随机抽取一人,体重超标的概率为;,不超标的概率为*44所以所求概率尸="升""第5454202.(2023届河北河间一中开学考,20)某市一隧道由于机动车常在隧道内变道、超速,进而引发交通事故,交管部门在该隧道内安装了监控测速装置,并将该隧道某日所有车辆的通行速度进行统计,如图所示.已知通过该隧道车辆的平均速度为64kmhl.求的值,并估计这一天通过该隧道车辆速度的中位数;为了调查在该隧道内安装监控测速装置的必要性,研究人员随机抽查了通过该隧道的200名司机,得到的答复统计如表所示,根据小概率值=0.01的独立性检验,能否认为对安装监控测速装置的态度与司机的性别相关?认为安装监控测速认为安装监控测速装置没有必要装置十分必要男司机7030女司机5050附X(+b)(Z)(+c)S+d),其中-"什a0.1000.0500.0100.001Xa2.7063.8416.63510.828解析(1)根据频率和为1可得10x(+b+0.02+0.01)=1,化简得+b=0.07,又45×0.1+55×0.2+65×10a+75×106=64,所以65+75b=4.85,联立解得,a=0.04,80.03.因为(0.01+0.02)xl0=0.3<0.5,(0.01+0.02+0.04)xl0=0.7>0.5,所以所求的中位数为6o+O.5-1O×(O.O1÷O.O2)x1o=65j0.4零假设为M:对安装监控测速装置的态度与司机的性别无关.根据表中数据,计算T三三三*333>6635i根据小概率值=0.01的独立性检验,没有充分证据推断为成立,因此可以认为HO不成立,即认为对安装监控测速装置的态度与司机的性别相关.3.(2023届广东六校联考,20)足球是一项大众喜爱的运动.2022卡塔尔世界杯揭幕战在2022年11月21日打响,决赛于12月18日晚进行,全程为期28天.(1)为了解喜爱足球运动是否与性别有关,随机抽取了男性和女性各100名观众进行调查,得到2x2列联表如下:喜爱足球运动不喜爱足球运动合计男性6040I(X)女性2080100合计80120200依据小概率值=0.001的独立性检验,能否认为喜爱足球运动与性别有关?(2)校足球队中的甲、乙、丙、丁四名球员将进行传球训练,第1次由甲将球传出,每次传球时,传球者都等可能地将球传给另外三个人中的任何一人,如此不停地传下去,且假定每次传球都能被接到.记开始传球的人为第1次触球者,第次触球者是甲的概率记为Pm即P=L(i)求为(直接写出结果即可);Gi)证明:数歹j%为等比数列,并比较第19次与第20次触球者是甲的概率的大小.附:F瑞a0.1()().05().0100.005().(X)1Xa2.7063.8416.6357.87910.828解析(1)零假设“0:喜爱足球运动与性别无关,根据列联表数据计算得9200×(60×80-20×40)oooo8i2 = B>lO828raoo,根据小概率值a=0.001的独立性检验,我们推断M)不成立,即认为喜爱足球运动与性别有关,此推断犯错误的概率不超过0.001. (i)由题意得:第二次触球者为乙,丙,丁中的一个,第二次触球者传给包括甲的三人中的一人,故传给甲的概率为条故P3=(ii)第次触球者是甲的概率为Pllt则当n2时,第/7-1次触球者是甲的概率为Pll-h第-1次触球者不是甲的概率为1-P.,贝U Pn=P,-i-0+(l-P.i) j = (1-P-),从而 P=_ XPnT. J,又Pq = *& -3是以割首项,2为公比的等比数列.则Px (一)T +;,Pi9=; ×(-)18+>j,P2o=;×(-)19 + j<p则Pi9>,故第19次触球者是甲的概率大.100、SCCC专题综合检测一、单项选择题1. (2019课标11,5,5分)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A.中位数B.平均数C.方差D.极差答案A2. (2022湖北八市联考,3)从装有2个红球和2个黑球的袋子内任取2个球,下列选项中是互斥而不对立的两个事件的是()A. “至少有1个红球”与“都是黑球”B. “恰好有1个红球”与“恰好有1个黑球”C.“至少有1个黑球”与“至少有1个红球”D.“都是红球”与“都是黑球”答案D3. (2022重庆云阳江口中学期末,8)高三班举行英语演讲比赛,共有六名同学进入决赛,在安排出场顺序时,甲排在后三位,且丙、丁排在一起的概率为()a1d139n47A.-B.-C.D.36180180答案B4. (2022河北省级联测联考五,4)小明参加某项测试,该测试一共3道试题,每道试题做对得5分,做错得0分,没有中间分,小明答对第1,2题的概率都是答对第3题的概率是去则小明答完这3道题的得分期望为()a25d65r20n25A.B.-C.-D.121233答案C5. (2023届江苏常州一中检测,4)已知两个随机变量X,Y,其中YN(,2)6>0),若E(X)=E(F),且P(IH<1)=0.4,则P(K>3)=()A.0.4 答案DB.0.3C.0.2D.0.16. (2023届长沙雅礼中学月考一,6)某工厂有甲,乙两个生产车间,所生产的同一批产品合格率分别是99%和98%,已知某批产品的60%和40%分别是甲,乙两个车间生产,质量跟踪小组从中随机抽取一件,发现不合格,则该产品是由甲车间生产的概率为()aJb5cId5答案D7. (2022重庆八中调研检测七,4)考察下列两个问题:已知随机变量XBg),且E(X)=4,O(X)=2,记P(X=I)寸;甲、乙、丙三人随机到某3个景点去旅游,每人只去一个景点,设A表示“甲、乙、丙所去的景点互不相同”,8表示“有一个景点仅甲一人去旅游”,记P(A=,则()aHB,=pb=Da=*,b弓答案C二、多项选择题8. (2022湖南三湘名校联盟联考,11)记数列atl的前项和为S”,已知Sll=an2-4an+b,在数集-l,0,1)中随机抽取一个数作为a,在数集-3,0,3)中随机抽取一个数作为比在这些不同数列中随机抽取一个数列为,下列结论正确的是()A.%是等差数列的概率为3B.j是递增数列的概率为:C小是递减数列的概率为gD.ShS2("N*)的概率为3答案AB9. (2022石家庄二中月考,10)下列命题中,正确的是()A.已知随机变量X服从二项分布B5,p),若E(X)=30,Q(X)=20,则P=IB.将一组数据中的每个数据都加上同一个常数后,方差恒不变C.设随机变量服从正态分布N(0,1),若P(O>l)=p,则PQlv史O)=PD.某人在10次射击中,击中目标的次数为X,X-B(10,。8),则当X=8时概率最大答案BCD三、填空题10. (2022上海市实验学校期中,8)一名信息员维护甲乙两公司的5G网络,一天内甲公司需要维护和乙公司需要维护相互独立,它们需要维护的概率分别为0.4和0.3,则至少有一个公司不需要维护的概率为.答案0.8811. (2019课标II理,13,5分)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为.答案0.9812. (2023届浙江嘉兴测试,15)树人中学进行篮球定点投篮测试,规则为每人投篮三次,先在A处投一次三分球,投进得3分,未投进得0分,然后在B处投两次两分球,每投进一次得2分,未投进得。分,测试者累计得分高于3分即通过测试.甲同学为了通过测试,进行了五轮投篮训练,每轮在A处和3处各投10次,统计该同学各轮三分球和两分球的投进次数如图:9876543210两分球命中个数第一轮第二轮第三轮第四轮第五轮若以五轮投篮训练命中频率的平均值作为其测试时每次投篮命中的概率,则该同学通过测试的概率是.答案0.504四、解答题13. (2019课标11,18,12分)11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、

    注意事项

    本文(11-5变量间的相关关系、统计案例-2024.docx)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开