欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOCX文档下载  

    Title Geometric Algebra New Foundations, New Insights标题的几何代数的新基础新的见解.docx

    • 资源ID:981546       资源大小:822.32KB        全文页数:68页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Title Geometric Algebra New Foundations, New Insights标题的几何代数的新基础新的见解.docx

    TheworkofAmbjornNaevewithinthefieldofMathematicsEducationalReformAmbjornNaeveMarch2001(I)CIDCentreforUserOrientedITDesignTableofContentTableofContent21. ProblemStatement42. Background52.1. TheCVAPresearchgroup62.2. TheGeometricToolboxproject62.3. PrqjectiveDrawingBoard:dynamicgeometricexplorations72.4. TheCentreforuser-orientedITDesign(CID)92.5. TheGardenofKnowledgeproject102.6. SomeILEprojectsatCID113. ConceptBrowsing123.1. Conceptualtopologies123.1.1. Traditionalconceptualtopologies123.1.2. Dynamicconceptualtopologies-hyperlinkedinformationsystems123.1.3. Problemswiththeabovementionedconceptualtopologies133.2. BasicDesignPrinciplesforConceptBrowsers143.3. Conzilla144. KnowledgeManifolds164.1. CreatingMultiplyNarratedKnowledgeComponents164.2. ComposingKnowledgeComponentsintoLearningModules175. MathematicalILEworkatCID195.1. TheVirtualMathematicalExploratorium195.1.1. Introduction195.1.2. Surfingthecontext215.1.3. Displayingmeta-datadescriptions235.1.4. Viewingthelistofcontentcomponentsthroughdifferentfilters245.1.5. Viewingtheactualcontentofacomponent275.1.6. Displayingthedecriptionofthecontentcomponents285.1.7. DesigngoalsandeducationalapplicationsoftheVME295.2. LiveGraphics3D-makingMathematicagraphicscomealive315.3. MathematicalComponentArchives325.3.1. GeneralgoalsoftheMCAproject335.4. CyberMath336. TheSwedishLearningLab376.1. Excerptfromtheproposalsummary376.2. NewMeetingPlacesforLearning386.2.1. Summary386.2.2. Projectoverview387. Archives,Portfoliosand3DEnvironments(APE)397.1. APE:TrackA:ContentandContextofMathematicsinEngineeringEducation397.1.1. Goals397.1.2. ActivityplanforstudywithintheMScprograminITatKTH397.1.3. ExcerptsfromtheProgressReportyear2000407.1.4. Currentstateoftheprojectcomparedtotheactivityplan417.1.5. Implementationofinteractivecontentandappropriatetools437.1.6. Educationalevaluation/assessmentresults(Study1)437.2. APE:TrackC:3DCommunicationandVisualizationEnvironmentsforLearning(CVEL)447.2.1. GoalsoftheCVEL-Project447.2.2. Activityplanyear2000(Workpackages)447.2.3. ExcerptsfromtheProgressReportyear20(X)-ResultsatDIS467.2.4. ExcerptsfromtheProgressReportyear2000-ResultsatCID468. PlannedLearningLabProjects:PersonalizedAccesstoDistributedLearningResources528.1. ProposalSummary528.2. Module:InfrastructureandIntelligentServices538.2.1. Contributors538.2.3. ProblemDescription,ResearchAspects538.2.4. ResearchGoalsZDeliverables538.2.5. Interactionwithothermodules558.2.6. CIDteam558.3. Module:Personalizedaccesstoeducationalmedia558.3.1. Contributors558.3.2. ResearchIssues569. GeometricAlgebraandMathEducationalReform589.3. DavidHestenes589.4. Modelingprogramexcellenceaward589.4.1. Exemplary&promisingeducationaltechnologyprograms(2000)599.5. SIGGRAPH-2000:GeometricAlgebraCourse609.5.1. CourseTitle:GeometricAlgebra:NewFoundations,NewInsights609.6. MathXplor-aVirtualMathematicsExploraioriumgroup629.7. DavidHestenesatKTH659.8. EducationalReformbasedonSoftwaredevelopment659.8.1. TheSimCalcProject659.8.2. OverallStrategy6710. CILTandEdGrid6710.3. TheCILT2000conferenceandtheM&Vworkshop6711. References6911.3. SelectedpublicationsbyAmbjomNaeve6911.4. SupervisoryActivitiesbyAmbjornNaeve701. ProblemStatementDuringthelasttwodecades,thespectacularadvancementswithinthefieldofinformationtechnologyhavecreatedpowerfulgraphicalworkstationswithpossibilitiestostudymathematicsinnewandexitingways.Todayitisevidenthowcomputerbasedanimationsandsimulationshaveaffectedmostfieldsthatinvolvemathematicalapplicationsinsomeway.Visualizationofstructuralrelationshipsanddynamicprocesseshasemergedasafieldofitsown,withapplicationswithinscienceandtechnologyaswellaswithineconomicsandsocialsciences.Itisthereforesomethingofaparadoxthatoneofthefieldsthatseemstohavebeenleastaffectedbythisdevelopmentisthefieldofmathematicsitself.Thisisespeciallytrueofmathematicseducation,i.e.mathematicaldidactics.Atouruniversitieswearestillcarryingonthetraditionalwaysofmathematicsteaching-executingourcoursesintheoverallspiritofuthesameprocedureaslastyear11!Amongmathematicsteachers,computersareoftenconsideredathreateningelement,thatfocusesthestudents'attentioninthewrongdirection.Thisattitudeiseasilyreinforcedbythemultitudeoflow-qualityeducationalsoftwarethatsupportsmathematicallytrivialpursuitsinonewayoranother.Infact,thisdeplorablestateofaffairshascausedtheissueofcomputer-supportedorcomputer-disturbedmathematicstosurfaceasamajordiscussionthemeamongmathematicaleducationalists. See the report titled Datorstddd eller (Iatorstord mutenutikundervisning ?, Hogskoleverkets Skriftserie I999:4S, ISSN 1400-9498.Ofcourse,therearemanyexceptionsfromthisbasicpatternintheformofindividualteachersthatinvolvethemselvesintryingtomakeintelligentuseofthepossibilitiesofpedagogicalrenewalthatareofferedbytheemergingICTtechnology.Butaslongastheyactalone,asisolatedenthusiastsemergedinanoceanofskeptics,theireffortsandexperienceswillremainhiddenandhencebedifficulttoharnessandreuseinasystematicway.2. BackgroundDuringmorethan3decadesAmbjornNaevehasbeeninvolvedinmathematicseducationatKTH-bothasateacherintheMathematicsdepartment,andasaneducationalreformist.Overthepast15years,Naevehasinitiatedandcoordinatedanumberofprojectsaimingtomakeuseofcomputersinordertoincreasethecomprehensibilityandaccessibilityofmathematicalconceptsandstructuresatalllevelsoftheeducationalsystem.Theseprojectshaveallbeenbasedonhisfirmconvictionthatincreasingthestudents1intuitiveunderstandingofmathematicalstructures-bothattheuniversitylevelandatthemoreelementaryschoollevel-isakeyelementinmotivatingthemtopursuemathematicalstudiesingeneral.ThisworkoriginatedasapartofNaeve,sresearchinthefieldofgeometricmodelingwithintheComputerVisionandActivePerception(CVAP)researchgroupatNADA.Duringthelast4yearsithasbeenapartofNaeve,sresearchworkinthefieldofinteractivelearningenvironmentsattheCentreforuser-orientedITDesign(CID)atNADA.Theworkhasresultedinanumberofsoftwaretoolsfortheinteractiveexplorationofmathematics12,severalofwhichhaveattractedbothnationalandinternationalattention.SomeofthemorerecentlydevelopedonesarePDB(ProjectiveDrawingBoard),COnZ川a(:Cid.nada.kth.se/il/ConZilla/default.html)andCyberMath(:nada.kth.se/qustavt/cvbermath/).TheywerepresentedlastyearattheSiggraphconferenceinNewOrleans-probablythemostprestigiouscomputerconferenceintheworld.CyberMathhasalsobeenacceptedforpresentationatICDE-2001(the20:thWorldConferenceonOpenLearningandDistanceEducation)inDusseldorfinApril(:icde.org).ConzillaandCyberMathhavebeenpartlydevelopedwithintheAPE(Archives,Portfolios,Environments)projectincooperationbetweenCIDandtheSwedishLearningLab(:/IeaminaIab.kth.se/library/Dresentations).TheprojectshaveinvolvedsystemsdesignandprogrammingbyNaevehimself,buthehasalsoheadedanumberofdevelopmentteamsinvolving3rdand4thyearstudentsattheComputerSciencedepartment(NADA)aswellasprojectsforthemastersthesis19,21,23andforthedoctoralthesis20.Thecommonthemeofalltheseprojectshasbeenthepresentationofmathematicalideasandstructuresinawaythatfacilitatesanincreasedunderstandingofthembymakingitpossibletoexploretheminteractivelythroughvariousformsofexperimentationandvisualization.Initially,theprojectswerefocusedongeometry-whichresultedinsoftwareprogramslikeMapCon(1986),MacWaIIpaper(1987)andMacDrawboard(1988),butprogramslikeHyperFIow(1987)andMapAnaIyze(1989)whichdealtwiththegeneralconceptoffunctionandPrimeTime(1992),whichdealtwithelementaryarithmeticwerealsocreated.See12forfurtherdetailsonthesesoftwaretools.Duringrecentyearstheworkhasbecomedirectedtowardsthecreationofcomputer-supportedmathematicstoolsthatcanfunctiontogetherinamodularizedanddistributedinteractivelearningenvironment.Inthisrespect,thefollowingprojectsdeservetobementioned: GeometricToolbox(researchworkatCVAP,1986-1994). TheGardenofKnowledge(interdisciplinaryprojectatCIDsince1996). ProjectiveDrawingBoard(doctoralworkatCVAP,1995-1999). Conceptualbrowsing(startedasamastersthesisworkatCID1998-1999,presentlyadoctoralthesisprojectatCID).Below,someoftheseprojectswillbedescribedbriefly.Foramoredetaileddescriptionthereaderisreferredto12.1.1. TheCVAPresearchgroupTheComputerVisionandActivePerception(CVAP)groupisaninternationallyrenownedresearchgroupatNADAwithinthefieldofComputerVisionandRobotics,whichhasbeendevelopedduringthepast15yearsundertheleadershipofProf.Jan-OlofEklundh.TheCVAPgrouphasastrongfoundationinmathematicsandcomputerscience.Ithasacquiredaninternationalreputationforitsabilitytotransformmathematicalideasintotechnicallyviableapplications,whichhasmadethegroupabletoattractalargenumberofgiftedstudents.Overtheyears,severalofthesocalled"excellencepositions"fordoctoralstudentsatKTHhavebeenheldbyresearchstudentsatCVAP.IncombinationwiththeinspiringleadershipofProf.Eklundh,thishasmadepossiblesomemathematicalsoftwaredesignofthehighestinternationalqualitylikee.g.GeometricToolbox(Naeve&Appelgren1986-94)andProjectiveDrawingBoard(Naeve&Winroth1995-1999).1.2. TheGeometricToolboxprojectThetypicalgeometricmodelingsituationoftodayischaracterizedby-andquitefrequentlyplaguedby-anumberoftoolswithahighdegreeofspecial"streamlined"performance.Thishasalmostinvariablyledto"adhoc'1choicesandsimplificationsthathavecreatedmathematicalinconsistenciesandtherebyrenderedalmostallofthetoolsincompatiblewiththeothers-preventingthemtoworktogetherinacoherentfashionagainstthesame',allinclusive"universalgeometricbackground.AtCVAP,AmbjornNaeveandJohanAppelgrenhavedevelopedasoftwarepackagecalledReflections19,whichisasystemfortheinteractivestudyofsurfaceshape.ThissystemwasusedasanexperimentalplatformforthetheorydevelopedbyNaeveinhisdissertation7.ReflectionsispartofasoftwaresystemcalledSurface-Geometry,whichisamathematicallybased,computationallyefficientgeometricrepresentationschemefor3Dsurface12.TheSurface-GeometrysystemisitselfpartofalargergeometricmodelingprojectwithinCVAP,calledGeometricToolbox,whichisaimedatproducinganinteractive"mathematics-friendly'geometricexperimentationenvironment-akindofgeometric"objectlibrary"-consistingofacollectionofcompatibleandreusablegeometricstructuresandalgorithmiccomponents.Usingthiskindofgeometrictoolbox,differentkindsofgeometricexperiments-putergraphics,computationalgeometryandcomputervision-canbeeasily"wiredtogether"andalltherelevantparameterscanbemanipulatedinamathematicallycontrolledandinteractivelyobservableway.Thedesiretoperformsuchexperiments-whereoneiscombining"heavycomputing"with"immediateviewing"oftheresult-isgrowingrapidlywithinthecommunityofcomputationalgeometry-asthepowerofsuchtechniquesindevelopingandtestingdifferentalgorithmsisbecomingmoreandmoreapparent.Thisisduetoacombinationoftheenormousincreaseofcomputationalpowerthathasmanifesteditselfinhardwarecomponentsoverthelastfewyearsandtheadvancedgraphicsworkstationcapabilitiesthatareonthevergeofsettlingdownoneverybody'sdesktop.Ithasfinallybecomefeasibletosimulatealargeclassofcomplicatedgeometricalsituationsandobtaininformationonlinewithdirectrelevancetotheunderstandingoftheunderlyingproblem.Thepossibilitytointeractivelyexpandonesintuitionaboutaproblem-byperformingmathematicallycontrolledexperimentsinthisway-isaverypowerfultechniquethatisboundtohaveaprofoundeffectontheentireresearchmethodologyofthefuture.ForadetaileddescriptionoftheresultsoftheGeometricToolboxproject,thereaderisreferredto6,7,12and19.1.3. ProjectiveDrawingBoard:dynamicgeometricexplorationsPDB(ProjectiveDrawingBoard)isaprogramthatsupportsinteractiveexplorationofgeometricconstructionsintheprojectiveplane PDB has been created by Harald Winroth as a part of his doctoral project 20 at CVAP under the supen,ision of Ambjorn Naeve. The program is based on an earlier prototype called MacDrawboard, which was developed by Ambjdm Naeve and a group of Computer Science students in 1998 12.Theprojectiveplaneisanenlargementoftheordinary(Euclidean)planewhichisconstructedbyintroducingnewelements(asetofidealpointsandoneidealline)insuchawaythattwoparallellinesintersectinanidealpointandalltheidealpointslieontheidealline.Intheprojectiveplane,twolinesalwaysintersectin(=lieon)onepoint,andofcoursetwopointsstilllieon(=intersectin)oneline.Hencethestructuralrelationshipsbetweenpointsandlinesbecomemuchsimpler,sincetheyarenowdevoidoftheclassicaleuclideanexceptionscausedbyparallellines,thatcanleadtocomplicatedcombinatorialproblems.Intheprojectiveplane,pointsandlinesareinfactrepresentedbythesamealgebra,anditisonlytheinterpretationofthealgebraicformulasthatdeterminetheirgraphicalappearence(asapointorasaline).Everygeometricconstructionhasahistory,whichreflectstheorderinwhichtheconstructionhasbeenbuiltup.Aconstructionprocesscanberegardedasaninterplaybetweenrandomchoice(e.g.choosetwopointsPandQ)andcanonicalnecessity(e.g.drawthelinePO).Ageometricobjectcanpartakeofboththeseelements(e.g.choosealineonP).Toanygeometricobjectwecanthereforeassociateasetofchildrenandasetofparentsinanaturalway.Intheexampleabove,thelinePOisachildofboththepointPandthepointQ,andbothofthesepointsareparentsofthelinePO.OneofthebasicideasinPDBistokeeptrackofthehistoryofageometricconstructionandmakeitpossibletochangeitinaconsistentway.Thismeansthatachangethataffectsanobjectacertainstageintheconstructionshouldpropagateforwardsothatitaffectsallthechildrenofthisobject.Inordertoupdatetheconstructioninthisway,PDBhasaccesstoanentirehierarchyofcoordinatesystemsthatkeeptrackofthepositionofeachobjectrelativetoitsparents.PresentlyPDBworksonlywiththeelementsofclassicalprojectivegeometry,i.e.points,linesandconics.However,thesystemisdesignedinaccordancewiththeobject-orientedparadigmanditiswellmodularizedtomakeiteasytoenlargeandexpandinvariousways.PDBpresentsbothagraphicandalogicviewofageometricconstruction.Moreover,theprogramallowsyounotonlytochangethepositionofanobject,withcoherentupdatesoftheeffectsonitschildren,buttoactuallychangethelogicoftheconstructionbydynamicallychangingtheconstraintsofanobject.Forexample,apointwhichisachildofaconiccanbetornofftheconicandeitherbeturnedintoafreepoint,orbesubjectedtosomeotherconstraintande.g.becomeapointonasomeline.Thisallowsyoutoplaywithaconstructionandexperiencepreciselyunderwhatconditionscertainthingshappen,i.e.youcaninteractivelyexploretheif-and-only-ifconditionsofageometrictheorem.GraphicviewLogicviewFig.1:Desargue,stheorem.Thecornersoftwotriangles(abcanda,b,c,)areperspectivefromapoint(green)ifandonlyifthecorrespondinglines(ab&a,b,be&b,c,andca&c,a,)ofthetrianglesareperspectivefromaline(black),i.e.thepointsp,q,rarecollinear.ToconveyanideaofthedynamicpossibilitiesofPDB,aQuickTimemoviethatillustratesthedynamicexplorationofDesargue1Stheoremisavailableat:nada.kth.se/amb/SnapzPro/Desargues.mov.1.4. TheCentreforuser-orientedITDesign(CID)CID,whichwasstartedin1995,isacompetencecenteratthedepartmentofNumericalAna

    注意事项

    本文(Title Geometric Algebra New Foundations, New Insights标题的几何代数的新基础新的见解.docx)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开