2022届一模分类汇编-集合、复数、平面向量、概率统计专题练习(解析版).docx
《2022届一模分类汇编-集合、复数、平面向量、概率统计专题练习(解析版).docx》由会员分享,可在线阅读,更多相关《2022届一模分类汇编-集合、复数、平面向量、概率统计专题练习(解析版).docx(26页珍藏版)》请在课桌文档上搜索。
1、目录集合与不等式21集合22常见不等式求斛4数余的犷充与复数的引入61复教的粕关概念,表示及几何意义,8则运算6平面向量81基本概念及线性运算82平行与垂直103平面向量敷量积及应用10计数原理与概率分布111计教原理,二项式定理,概率小题112概率统计大题13集合与不等大1集合一、选择题1. (202204东城一模01)已知集合A=xx-1,B=-l2,贝J4U3=A.x-l-1C.x-lxv3D.H%-1【答案】D2. (202204西城一模01)己知集合A=-2,0,2,=,则AlB=A.0,2B.2C.-2,2D.-2,0,2【答案】A3. (202204海淀一模01)己知集合A=x-
2、1x2,B=,则AUB二A.巾2B.(xx-1C.xx-1D.xx【答案】B4. (202203朝阳一模01)己知集合44,集合8=卜,-3x+2v,则AUB=A.0B.x12C.x2x4D.xlx45. (202203丰台一模01)已知集合A=何一1vx2,8=小2xl,则AUB二A.x-1 X V 1C.x-2x2B.x-lxlD.x-2x2【答案】D6. (202203石景山一模01)设全集U=xcRxNl,集合A=xRK3,则Q,A二A.l,3)B.l,3C.(3,+oo)D.3,-o)【答案】A7. (202203门头沟一模01)已知集合A=-4,-3,-2,T,0,L2,3,4,B
3、=x9,则AIB=A.0,l,2,3,4B.-3,-2,-1,0,1,2,3)C.-2,-l,0J,2D.(-3,3)【答案】C8. (202203房山一模10)已知U是非空数集,若非空集合A,4满足以下三个条件,则称(A,&)为集合U的一种真分拆,并规定(l,A)与(4,A)为集合U的同一种真分拆.AlA2=0;AU&二U;Aa=1,2)的元素个数不是Aj中的元素.则集合U=1,2,3,4,5,6的真分拆的种数是A.5B.6C.10D.152米见不等式求解1. (202204东城一模08)已知R,则2十2是Tl的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件
4、【答案】A2. (202204西城一模03)设=log3O.4,Z?=Iog30.3,c=O.33,则A.acbB.bcaC.abcD.baIog2X的解集是A.(-,2)B.(2,+)C.(0,2)D.(0,l)【答案】C4. (202203朝阳一模04)设m(0,1),若=lgn,?=lgn2,C=(Igm)2,则.abcB.bcaC.cabD.cba【答案】C5. (202203平谷一模04)已知vbvB.acabC.2“2DJogc(F)logf(-Z?)数余的犷充与复教的引入X复教的相关*念,就示及几何意义、四则运算一、选择题1.(202204东城一模03)已知复数Z满足iz=2+i
5、,则Z的虚部为A.2B.-2C.lD.-1【答案】B2.(202204西城一模02)亚数z=-的共捌兔数Z=1+i一.1.n11A.1iB.l+iC.iD.-+-2222【答案】B3.(202204海淀一模02)在复平面内,复数Z对应的点为(1,7),则z(l+i)=A.2B.2iC.-2iD.-2【答案】A4.(202203丰台一模03)已知复数z=a+历(,0R),则=0”是“z为纯虚数”的A.充分而不必要条件C.充分必要条件【答案】B5. (202203石景山一模02)复数ZA.-iB.i【答案】A6. (202203门头沟一模02)复数ZA.第一象限C.第三象限B.必要而不充分条件D.
6、既不充分也不必要条件满足(l+i)z=l-i,则Z=C.-1D.1=(-1+i)(2+i)对应的点在复平面内的B.第二象限D.第四象限【答案】B27.(202203平谷一模02)在夏平面内,复数z=,-,则Z的虚部是1+iA.-lB.lC.2D.-2【答案】A二、填空题1.(202203朝阳一模11)计算复数i(l+i)=.【答案】7+i平面向量X基本概念及或性运算一、选择题1. (202203门头沟一模08)已知。是边长为2的正AC边BC上的动点,则A8A。的取值范围是A.3,4B.3,2C.0,2D.2,4【答案】D2. (202203平谷一模07)已知边长为2的正方形ABa),设Q为平面
7、ABCZ)内任一点,uumUUiD则0A3AP4是点P在正方形及内部”的B.必要不充分条件D.既不充分也不必要条件A.充分必要条件C.充分必要条件【答案】B二、填空题1. (202204东城一模12)已知向量A8,CO在正方形网格中的位置如图所示.若网格上小正方形的边长为1,贝JA3CD=.【答案】52. (202203平谷一模12)已知向量,b,c在正方形网格中的位置,如图所示.则(+b)c=【答案】63. (202204海淀一模14)已知6心是单位向量,且qv?=。,设向量。=义勺+%,当4. =1时,=;当4+=2时,-ej的最小值为.2【答案】14,4,22平行与委女一、填空题1.(2
8、02203丰台一模12)已知向量0=(-2,3),b=(x,-0.若aHb,则X=.【答案】43平面向量救量病及应用一、选择题1. (202204西城一模06)已知向量,b满足IH=5,b=(3,4),ab=O.则IaTI=A.5B.5点C.10D.102【答案】B2. (202203朝阳一模03)已知平面向量,b满足同=2,Ml=I,且人与力的夹角为生,则,+同=A.3B.5C.7D.3【答案】A计数原理与概率分布1计效原理,二项灰定理,概率小题1. (202204海淀一模04)在(-行1的展开式中,/的系数为A.-1B.1C.TD.4【答案】B2. (202204朝阳模07)已知三棱锥A-
9、BCD,现有质点Q从A点出发沿棱移动,规定质点Q从个顶点沿棱移动到另一个顶点为1次移动,则该质点经过3次移动后返回到A点的不同路径的种数为A.3B.6C.9D.12【答案】B3. (202204东城一模11)在(2-返产的展开式中,常数项为.(用数字作答)【答案】644. (202204西城一模04)在(1-2x)6的展开式中,常数项为XA.-120B.I20C.-160D.160【答案】C5. (202204房山一模04)若卜+)的展开式中的常数项为20,则=()(八)2(B)-2(C)1(D)-1【答案】D6. (202204门头沟一模11)在(2/一厅的展开式中,/的系数为.(用数字作答
10、)【答案】-407. (202204平谷一模11)在(V+2尸的展开式中,常数项为.(用数字作答)X【答案】128. (202204石景山一模03)从1,2,3,4,5中不放回地抽取2个数,则在第1次抽到偶数的条件下,第2次抽到奇数的概率是A.-B.-C.-D.-5254【答案】D9. (202204石景山一模12)在(V+3的展开式中,审的系数是.(用数字填X写答案)【答案】352税率优计大题1.(202204海淀一模18)(本小题14分)黄帝内经中十二时辰养生法认为:子时的睡眠对一天至关重要(子时是指23点到次日凌晨1点).相关数据表明,入睡时间越晚,深睡时间越少,睡眠指数也就越低.根据某
11、次的抽样数据,对早睡群体和晚睡群体睡眠指数的统计如下表.组别睡眠指数早睡人群占比晚睡人群占比10,51)0.1%9.2%251,66)11.1%47.4%366,76)34.6%31.6%476,90)48.6%11.8%590,1005.6%0.0%注:早睡人群为23:00前入睡的人群,晚睡人群为01:00后入睡的人群.(I)根据表中数据,估计早睡人群睡眠指数25%分位数与晚睡人群睡眠指数25%分位数分别在第几组?(II)据统计,睡眠指数得分在区间76,90)内的人群中,早睡人群约占80%.从睡眠指数得分在76,90)内的人群中随机抽取3人,以X表示这3人中属于早睡人群的人数,求X的分布列与
12、数学期望E(X);(III)根据表中数据,有人认为,早睡人群的睡眠指数平均值一定落在区间76,90)内.试判断这种说法是否正确,并说明理由.【答案】(I)0.1%+ll.l%=11.2%v25%,0.1%11.1%+34.6%=45.8%25%,早睡人群睡眠指数25%分位数在第3组;9.225%,晚睡人群睡眠指数25%分位数在第2组.(II)由题意得X的取值范围是0J2,3,P(X=O)=%)。*=总;P(X=I)=*y(I)2=哉:P(Xf=2,=:P(X=3)=b.(13分)4. (202204西城一模18)(本小题4分)2021年是北京城市轨道交通新线开通的“大年”,开通线路的条、段数为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 届一模 分类 汇编 集合 复数 平面 向量 概率 统计 专题 练习 解析
链接地址:https://www.desk33.com/p-1060162.html