柔性制造系统在线零件识别系统.doc
《柔性制造系统在线零件识别系统.doc》由会员分享,可在线阅读,更多相关《柔性制造系统在线零件识别系统.doc(38页珍藏版)》请在课桌文档上搜索。
1、 毕业设计说明书题 目:柔性制造系统在线零件识别 系统 31 / 38目 录摘要 1 绪论 12 总体方案设计 72.1 引言72.2 基于系统的一些问题的提出72.3 总体方案的设计92.4 系统的硬件设计113 在线零件识别系统中数据库的建立 133.1 数据库组成与文件133.2 创建数据库153.3 管理数据库193.4 设计零件数据库和建立图表224 软件系统的设计及零件的识别与实现244.1 引言244.2 软件的设计与编程244.3 软件系统整体设计244.4 模版匹配的概念和算法264.5 运用MATLAB基于图像模版匹配的零件识别 285 总结与展望 31致词 32参考文献3
2、3摘 要 随着现代科技的发展,现代化工业生产对制造精度更高、效率更快、智能化更高的先进制造技术要求越来越迫切;机器视觉技术具有快速性、可重复性、智能化、非接触、现场抗干扰能力强等优点,机器视觉技术应用于柔性制造系统大提高了系统得柔性化、自动化、和智能化水平,适应了现代制造业的进步和发展要求,在实际应用中显示出了广阔的应用前景。基于机器视觉的柔性制造系统在线零件识别系统的研究。涉及到机器视觉系统的建立、图像采集方案的实现、图像预处理等方面,从理论和实践上解决了用机器视觉实现柔性制造系统在线零件自动识别的一系列问题。本文的具体容有以下几点:1、阐述了机器视觉识别技术的研究背景和意义,然后在介绍机器
3、视觉技术的发展和应用状况以及机器视觉技术在机械制造行业中的应用现状的基础上,概述了本文的研究目的和主要工作。 2、按照机器视觉系统的逻辑结构,分析各部分的设计方法,并在此方法的指导下本文建立了由CCD工业相机、镜头、光源和PC机组成的机器视觉系统,系统通过CCD和图像采集卡获取被识别零件的二维图像数据,将其送入计算机,经过图像预处理和图像识别分析,实现了对零件的自动识别。3、着重介绍零件数据库的建立用SQL2000说明。4.对在线零件识别软件系统的预处理,零件识别实现进行了介绍关键词柔性制造系统,图像预处理,数据库建立,软件系统。ABSTRACTWith the development of
4、modern science and technology, it is more and morenecessary to apply the advanced manufacturing technology with higher precision,efficiency and intelligence in the modern industrial manufacture. Machine visiontechnology has much virtue such as rapid, repetition, intelligent, non-contact and with str
5、ong anti-amming ability. It is used in the flexible manufacturing system and increases the systems flexibility, automatization and intelligentizing level. Machinevision is suited for the development and need of modern manufacturing and it has wideapplication foreground.To solve the problem of callin
6、g correct NC program automatically, real-timely for different online part in FMS, theresearch of FMS on-line parts recognizing system worked on machine vision was done.The research includes the composing of machine vision system, implementing ofimage capturing, image pre-processing, edge-detect and
7、the image recognition etc.When recognizing the online parts automatic in the FMS with machine visiontechnology a series of problem was solved in theory and practice. The main contextof this thesis are as following:1 .Firstly, this thesis expounds the research background and significance ofmachine vi
8、sion technology. Based on the development and application status ofmachine vision recognizing in manufacturing, the research aim and main task areintroduced.2Analyze the designing method of each part for FMS according to its logicalstruchue and build up the system under the guidance of this method.
9、The machinevision system is composed of a CCD camera, camera lens, a light source and apersonal computer. The system acquires the no-reflecting image by the CCD cameraand image capture card, sent it to the computer to process. Finally finishes the part recogntion.3Introduces the parts database .4for
10、 parts recognition software system for preprocessing, parts recognition realization are introducedKeywords FMS, pre-processing, Database, software system第1章 绪论视觉包括对光信号的感受、对视觉信息的获取、传输、处理与理解,是人类观察世界和认知世界的重要手段。据统计人类从外部世界获得的信息约有80%是由视觉获取的。随着信号处理理论和计算机技术的发展,人们试图用摄像机获取环境图像并将其转换成数字信号,用计算机实现对视觉信息处理的全过程,这就是计
11、算机视觉,其目的是使计算机具有通过一幅或多幅图像认知周围环境信息的能力。机器视觉则是建立在计算机视觉理论的基础上,偏重于计算机技术工程化。与计算机视觉研究的视觉模式识别、视觉理解等容不同,机器视觉重点在于感知环境中物体的形状、位置、姿态、运动等几何信息。1.1机器视觉技术的发展与应用1.1.1机器视觉技术概述机器视觉是机器对图像进行自动处理并报告图像中有什么的过程,也就是说它识别图像中的容。图像中的容往往是某些机器零件,而处理的目标不仅要能对机器零件定位,还要能对其进行检验。机器视觉实际上是数字视觉技术与工业制造技术的结合的综合性技术,主要包括数字图像处理技术、机械工程技术、控制技术、电光源照
12、明技术,光学成像技术、传感器技术、模拟与数字视频技术,计算机软硬技术,人机接口技术等。这些技术在机器视觉中是并列关系,这些技术相互协调应用才能构成一个成功的工业机器视觉应用系统。机器视觉系统基本原理:机器视觉系统通常采用CCD 相机摄取图像,将其转化为数字信号,再采用先进的计算机硬件与软件技术对图像数字信号进行处理,从而得到所需要的各种目标图像特征值,并在此基础上实现模式识别、坐标计算、灰度分布图等多种功能。机器视觉系统能够根据其检测结果快速地显示图像、输出数据、发布指令,执行机构可以配合其完成指令的实施。机器视觉系统主要由图像获取、图像分析和处理、输出显示或控制三个功能模块组成。图像获取设备
13、包括光源、摄像机等,其中关键部件CCD是由分布于其上的各个像元的光敏二极管的线性阵列或矩形阵列构成,通过顺序输出每个二极管的电压脉冲,实现将图像光信号转换成电信号的目的。输出的电压脉冲序列可以直接以RS-170制式输入标准电视显示器,或者输入计算机的存,进行数值化CCD是现在最常用的机器视觉传感器。图像处理包括相应的软件和硬件系统。显示或输出与过程相连,包括监视界面,过程控制器和报警装置等。摄像数据通过计算机对标准和故障图像的分析和比较,若发现不合格产品,则通过NO信号报警,并由执行机构自动将其排除出生产线。机器视觉检测的结果可以作为计算机辅助质量CAQ 系统的信息来源,也可以和其它控制系统集
14、成。1.1. 2机器视觉技术的发展机器视觉是一个相当新且发展十分迅速的研究领域,并己成为计算机科学的重要研究领域之一机器视觉是在20世纪so年代从统计模式开始的,当时的工作主要集中在二维图像分析和识别上,如光学字符识别、工件表面、显微图片和航空图片的分析和解释等。20世纪60年代,Roberts通过计算机程序从数字图像中提取诸如立方体、菱柱体等多面体的三维结构,并对物体形状及物体的空间关系进行描述。Roberts的研究工作开创了以理解三维场景为目的三维机器视觉的研究。Roberts对积木世界的创造性研究给人们以极大的启发,许多人相信,一旦有白色积木玩具组成的三维世界可以被理解,则可以推广到理解
15、复杂的三维场景。于是人们对积木世界进行了深入的研究,研究的围从边缘、角点等特征到提取线条、平面、曲面等几何要素分析,一直到图像明暗、纹理、运动以及成像几何等,并建立了各种数据结构和推理规则。到了20世纪70年代,己经出现了一些视觉应用系统。1977年,以David M,教授为代表,提出了不同于积木世界分析方法的计算视觉理论,该理论在20世纪80年代成为机器视觉研究领域中的一个十分重要的理论框架,对立体视觉的发展产生了巨大的影响。Mary创立的视觉理论他首先从信息处理的角度出发综合了图像处理,心里物理学,神经生理学及临床精神病学的研究成果,提出了一个较为完善的视觉系统框架,他认为视觉过程可以分为
16、三个阶段:第一阶段是将输入的原始图像进行处理,抽取图像中诸如角点,边缘,纹理,线条,边界等基本特征,这些特征的集合为基元图;第二阶段是指在以观测者为中心的坐标系中,由输入图像和基元图恢复场景中可见部分的深度,法线方向,轮廓等,这些信息包含了深度信息,但不是真正的物体三维表示,称二维半图;第三阶段是在以物体为中心的坐标系中,由输入图像,基元图和二维半图来恢复、表示、识别三维图体。基于这种理论框架,研究者们对其中的各个研究层面进行了大量的研究。到80年代中期,机器视觉获得蓬勃的发展,新概念、新方法、新理论不断涌现,比如基于感知特征群的物体识别理论框架、主动视觉理论框架、视觉继承理论框架等。20世纪
17、90年代,随着光电自动化和计算机技术的高速发展,利用机器视觉的快速性、可重复性、智能化和可现场性的特点,机器视觉在汽车零配件批量加工的尺寸检查和自动装配的完整性检查、电子装配线的元件定位、IC上的字符识别、印刷电路板的检验等应用场合得到了具体的应用。作为一个充满生机与活力的学科,机器视觉检测技术在现代工业中具有广泛的应用前景,目前国外己经有了许多这方面的研究。许多传统的人工视觉检测方在逐步被计算机视觉检测技术所代替,而且又有许多新的成像方法得到了广泛的研究和应用,除了最普通的自然光图像及光学显微图像外,还有p射线图像, X射线图像、红外热力图像、核磁共振图像、共焦显微图像、低湿电子显微图像等成
18、像技术。所有这些图像,都可以经过适当的转换,成为计算机可以处理的数字图像,然后利用机器视觉的方法,对其进行处理与分析,提取得到研究者所需的信息,使检测过程更简单,结果更准确,速度更快。近年来,国机器视觉技术应用研究得到迅猛的发展,各行业的领先企业在解决了生产自动化问题后,已开始将目光转向视觉测量、识别的自动化方向,即智能的机器视觉系统的应用。机器视觉技术在国的发展可大致分为三个阶段:1990年以前,仅仅在大学和研究所中有一些研究图像处理和模式识别的实验室。在20世纪90年代初,一些来自这些研究机构的工程师成立了他们自己的视觉公司,开发了第一代图像处理产品,例如基于ISA总线的灰度级图像采集卡,
19、和一些简单的图像处理软件库,他们的产品在大学的实验室和一些工业场合得到了应用,人们能够做一些基本的图像处理和分析工作。尽管这些公司用视觉技术成功地解决了一些实际问题,例如多媒体处理,印刷品表面检测,车牌识别等,但由于产品本身软硬件方面的功能和可靠性还不够好,限制了他们在工业应用中的发展潜力。大恒图像公司就是做的较好者之一。另外,一个重要的因素是市场需求不大,工业界的很多工程师对机器视觉没有概念,另外很多企业也没有认识到质量控制的重要性。这种状况一直持续到1998年。所以,我们称19901998年为初级阶段。自从1998年,越来越多的电子和半导体工厂,包括和投资的工厂,落户和。带有机器视觉的整套
20、的生产线和高级设备被引入中国。随着这股潮流,一些厂商和制造商开始希望发展自己的视觉检测设备,他们从美国和日本引入最先进的成熟产品,给终端用户提供专业培训咨询服务,有时也和他们的商业伙伴一起开发整套的视觉设备。机器视觉系统不仅仅是应用半导体和电子行业,而且开始应用在汽车、食品、饮料、包装等行业中,这里,我们将199820XX定义为机器视觉概念引入期。第三阶段从20XX至今,我们称之为机器视觉发展期,中国机器视觉的呈快速增长趋势;在许多行业如半导体、电子、计算机配件、消费品、食品、汽车、冶金、包装、制药等,客户开始寻求视觉检测和识别解决方案;同时开发图像采集卡、图像软件等图像处理产品的稳定性和可靠
21、性得到很大的提高,开始应用于工业现场。1.1. 3机器视觉技术的应用随着现代生产自动化程度的不断提高,机器视觉的应用围不断扩大,在自动化生产领域所处的地位也逐渐上升。应用需机器视觉研究的巨大推动力.各行各业对于机器视觉系统的需求越来越迫切,机器视觉系统的市场正在形成、发展。机器视觉系统已被广泛应用于各个领域,如:对高速贴片机上对电子元件的快速定位、对管脚数目的检查、对IC表面印字符的辨识、汽车仪表盘加工精度的检查、轴承生产中对滚珠数量和破损情况的检查、钢带表面缺陷的检查等等,图1.2所示为一些在制造行业中的具体应用。如果按行业划分,机器视觉主要应用行业为:自动控制、电子与电气、机械制造、医药行
22、业、玻璃瓷、包装行业、印刷行业、交通运输、纺织工业、机器人技术等领域。1.工业视觉:如工业检测、工业探伤、自动生产流水线、邮政自动化、计算机辅助外科手术、显微医学操作,以及各种危险场合工作的机器人等。将图像和视觉技术用于生产自动化,可以加快生产速度,保证质量的一致性,还可以避免人的疲劳、注意力不集中等带来的误判。2.人机交互:如人脸识别、智能代理等,让计算机可借助人的手势动作、嘴唇动作、躯干运动、表情测定等了解人的愿望要求而执行指令,这既符合人类的交互习惯,也可增加交互方便性和临常感等。3.视觉导航:如巡航导弹制导、无人驾驶飞机飞行、自动行驶车辆、移动机器人、精确制导等,既可避免人的参与及由此
23、带来的危险,也可提高精度和速度。4.虚拟现实:如飞机驾驶员训练、医学手术模拟、场景建模、战场环境表示等它可帮助人们超越人的生理极限,亲临其境,提高工作效率。5.图像自动解释:包括对放射图像、显微图像、遥感多波段图像、合成孔径雷达图像、航空航测图像等的自动判读理解。由于近年来技术的发展,图像的种类和数量飞速增长,图像的自动理解已成为解决信息膨胀问题的重要手段。机器视觉检测技术在国外发展很快,早在20世纪80年代,美国国家标准局就预计,检测任务的90%将由视觉检测任务来完成。美国在80年代就有100多家公司跻身于视觉检测系统的经营市场;国际权威统计资料显示,全球机器视觉市场总量正在向100亿美元挺
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 柔性制造系统 在线 零件 识别 系统
链接地址:https://www.desk33.com/p-10643.html