专题03直线的方程及其位置关系(考点清单)(原卷版).docx
《专题03直线的方程及其位置关系(考点清单)(原卷版).docx》由会员分享,可在线阅读,更多相关《专题03直线的方程及其位置关系(考点清单)(原卷版).docx(20页珍藏版)》请在课桌文档上搜索。
1、专题03直线的方程及其位置关系(考点清单)目录一、思维导图1二、知识回归2三、典型例题讲与练7考点清单01:斜率与倾斜角变化关系7【考试题型D斜率与倾斜角变换关系7考点清单02:求斜率或倾斜角的取值范围7【考试题型1】直线与线段有公共点,求斜率取值范围7考点清单03:斜率公式的几何意义的应用8【考试题型1】利用斜率的几何意义求代数值(范围)8考点清单04:直线方程8【考试题型1】求直线方程8考点清单05:两条直线平行与垂直关系10【考试题型D两条直线平行与垂直关系的判定10【考试题型2】根据两条直线平行与垂直关系求参数10考点清单06:根据直线平行,垂直求直线方程11【考试题型1】求平行,垂直
2、的直线方程11考点清单07:直线过定点问题12【考试题型1直线过定点问题12考点清单08:直线与坐标轴围成图形面积问题13【考试题型1】直线与坐标轴围成图形面积问题(定值)13【考试题型2】直线与坐标轴围成图形面积问题(最值)14考点清单09:易错点根据截距求直线方程15【考试题型1】易错忽略过原点的直线15考点清单10:对称问题16【考试题型11点关于直线对称点16【考试题型2】直线关于点对称问题(求4关于点尸(。力)的对称直线则42).17【考试题型3】直线关于直线对称问题(两直线相交)17【考试题型4】直线关于直线对称问题(两直线平行)18【考试题型5】将军饮马问题19一、思维导图二、知
3、识回归知识点Oh直线斜率的坐标公式如果直线经过两点4(x,M),(x2,y2)(x1x2),那么可得到如下斜率公式:=%ZX2X(1)当玉二工2时,直线与X轴垂直,直线的倾斜角a=90,斜率不存在;(2)斜率公式与两点坐标的顺序无关,横纵坐标的次序可以同时调换;(3)当凹=以时,斜率攵=0,直线的倾斜角=0,直线与X轴重合或者平行。知识点02:两条直线平行对于两条不重合的直线4,4,其斜率分别为K,&2,有/20K=%2对两直线平行与斜率的关系要注意以下几点(i)1i2=h成立的前提条件是:两条直线的斜率都存在;/与,2不重合.(2)当两条宜线不重合且斜率都不存在时,乙与,2的倾斜角都是90,
4、则J4(3)两条不重合直线平行的判定的一般结论是:4”2=K=&或4,4斜率都不存在.知识点03:两条直线垂直如果两条直线都有斜率,且它们互相垂直,那么它们的斜率之积等于T;反之,如果它们的斜率之积等于-1,那么它们互相垂直,即4L2=K22=-L对两直线垂直与斜率的关系要注意以下几点(D4U2UK/2=T成立的前提条件是:两条直线的斜率都存在;o且网工0(2)两条直线中,一条直线的斜率不存在,同时另一条直线的斜率等于零,则两条直线垂直.(3)判定两条直线垂直的一般结论为:Z11=-1或一条直线的斜率不存在,同时另一条直线的斜率等于零.知识点04:直线的点斜式方程己知条件(使用前提)直线/过点
5、PaO,%)和斜率Z(已知一点+斜率)图示/o,JL点斜式方程形式J-Jo=Z(X-Xo)适用条件斜率存在(注直线/若斜率不存在不可使用该形式直线方程)知识点05:直线的斜截式方程已知条件(使用前提)直线I的斜率为左且在y轴上的纵截距为人(已知斜率+纵截距)图示yVA, B不同时为04 + 32 o)叫做直线的般式方程,简称般式.说明:1 .A、8不全为零才能表示一条直线,若A、8全为零则不能表示一条直线.当30时,方程可变形为y,斜率为-一的直线.B=-x-f它表示过点(,一)BBB)C当5=0,A0时,方程可变形为AX+C=0,即X=-一,它表示一条与X轴垂直的直线.A由上可知,关于工、y
6、的二元一次方程,它都表示一条直线.2 .在平面直角坐标系中,一个关于X、y的二元一次方程对应着唯一的一条直线,反过来,一条直线可以对应着无数个关于X、y的一次方程.3 .解题时,如无特殊说明,应把最终结果化为一般式.知识点08:两条直线的交点坐标直线乙:AX+q),+G=O(A?+厌0)和hAx+&y+c2=。(8+M0)的公共点的坐标的解一一对应.AX+gy+G=0A2x+B2y+C2=04与4相交o方程组有唯解,交点坐标就是方程组的解;4与4平行o方程组无解;1与4重合。方程组有无数个解.知识点09:两点间的距离平面上任意两点(,M),(/,%)间的距离公式为IPf2=(x2-x1)2+(
7、y2-y1)2特别地,原点0(0,0)与任一点P(,y)的距离IoPl=JX2+y2.知识点10:点到直线的距离、,IAr0+ByO+C|平面上任意一点6(%,%)到直线/:Ar+By+C=0的距离d=,九,.A+B知识点Ih两条平行线间的距离一般地,两条平行直线4:AX+4)+G=o(l2+,2)/2:A2x+B2y + C2 =0 (国+ 8;00 )间的距离dq-c2a2 + b2知识点12:对称问题点关于直线对称问题(联立两个方程)求点尸(3,必)关于直线/:Ar+By+C=O的对称点Q(a,b)设尸。中点为A利用中点坐标公式得y+8、IA%+X+匕、八、jl.,n,n-rk,A(-,
8、2-),将A(-,2一)代入直线/:AX+By+C=O中;2222须Qa=-I整理得:Pb2lc=o22比(令一1x1-aB三、典型例题讲与练考点清单01:斜率与倾斜角变化关系【考试题型1斜率与倾斜角变换关系【解题方法】图象法【典例1】(2023上福建泉州高二福建省德化第一中学校考阶段练习)直线4,2,Z3,的图象如图所示,则斜率最小和最大的直线是()A.1,I3B.2,I3C.4,I2D.4,【典例2】(2023上江西南昌高二校考阶段练习)若直线/的倾斜角为。,且45o135o,则直线/斜率的取值范围为()A.l,+)B.(,-1C.1,1D.l+)j(-,-1【专训(2023上河南南阳高二
9、校考阶段练习)已知直线小J4的倾斜角分别为30。,53。,125。,斜率分别为b%,则()A. kik2k3B. k2kik3C. %khD. &_2),_5=04:6x+y_5=0不能围成三角形,则加的值可以是()A.2B.2C.;D.22【专训11】(2023上江苏徐州高二统考期中)已知直线4+(加+1)丁+m一2=0,4:2a+4),+16=0平行,则这两条平行直线之间的距离为.【专训12】(2023上甘肃武威高二天祝藏族自治县第一中学校联考期中)已知直线4:以-y+2=0,I2:(+2)x-y-2=0.若“2,求实数。的值;(2)若4,3求实数的值.考点清单06:根据直线平行,垂直求直
10、线方程【考试题型1求平行,垂直的直线方程【解题方法】斜率相等或斜率相乘为T【典例1】(2023全国高二课堂例题)己知直线/的方程为3X+4),-12=0,求直线r的方程,使/满足:过点(T,3),且与/平行;过点(-1,3),且与/垂直;【典例2】(2023上广东广州高二华南师大附中校考期中)己知直线满足下列条件,求直线方程:(1)经过两条直线x+2y-5=0和3x_y_l=0的交点,且平行于直线5xy+100=0;【专训11】(2020上四川成都高二校考期中)已知直线/经过点P(-2,2).(1)若直线/平行于直线3x-2y-9=0,求直线/的方程.若直线/垂直于直线3x-2y-8=0,求直
11、线,的方程.考点清单07:直线过定点问题【考试题型U直线过定点问题【解题方法】两条直线相交交点坐标【典例13.(2023上河北石家庄高二石家庄一中校考期中)不论左为任何实数,直线(2k1)%-仕+3),-(11)=0恒过定点,若直线皿+纺,=2过此定点其中孙是正实数,则1的最小tn2n值是()21c27-21、27A.-B.C.D.4422【典例2】(2023上浙江高二校联考期中)设mR,若过定点A的动直线x+my=。和过定点B的动直线皿ym+2=0交于点P(XM,则以冏的最大值是()A.-B.2C.3D.52【专训11】(2023上全国高二专题练习)己知满足24+人=1,则直线公+3y+b=
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题 03 直线 方程 及其 位置 关系 考点 清单 原卷版
链接地址:https://www.desk33.com/p-1076208.html