人工智能在智慧建筑中的应用研究.docx
《人工智能在智慧建筑中的应用研究.docx》由会员分享,可在线阅读,更多相关《人工智能在智慧建筑中的应用研究.docx(8页珍藏版)》请在课桌文档上搜索。
1、人工智融智慧建筑中的应用研究引言:城市建筑是环境污染物质的重要来源。智慧建筑遵循绿色、环保理念,促进智慧城市发展。智慧建筑寻求物联网技术、云计算技术、大数据技术、BIM等多种技术之间的融合。智慧建筑项目的开展通过有效推动建筑业的转型升级,促进人工智能与建筑行业的深度融合。1 .人工智能与智慧建筑的相关理论1.1 智慧建筑的概念和发展智慧建筑由传统建筑和智能建筑发展而来。传统建筑通过建筑体物理层面的设计,为用户提供基本的居住功能,兼顾艺术和审美的需求。智能建筑则是使用信息化和自动化技术,改造信息技术和建筑的深度融合。智慧建筑在智能建筑的基础上,关注智能化信息的综合应用,更加强调智能化技术的感知、
2、分析、决策等能力。国标GB/T50314-2000智慧建筑设计标准对智慧建筑做出了明确的定义。智慧建筑围绕实体建筑物展开,集计算机与互联网技术为一体,加设信息设备系统、公共安全系统、建筑设备管理系统等,是智能架构、智能系统、智能应用与智能管理之间达到优化综合,为居住者提供更加健康、高效、绿色、便捷的建筑环境。智慧建筑是融合人、机、物的开放型系统,围绕用户的需求,为用户提供新型服务技术和服务产品。智慧建筑的概念引入中国后,逐渐在多地实现了智能大厦的建设。我国许多产地开发商迎合时代发展的趋势,建设智慧建筑、智能小区与智能住宅,以“智能化”作为卖点,为用户提供更加安全、舒适、便捷的智能化服务体验。以
3、我国2009年建设的首个数字化社区景湖时代城为例,该社区为用户提供了全覆盖的网络服务体验,用户在社区内享受影视服务,拥有全方位的安全监控。1.2 智慧建筑的特征环境维度:在环境维度层面,智慧建筑致力于通过优化设计,在充分满足用户需求的条件下,最大程度减少建筑资源的消耗,围绕“绿色”“共享”推动智慧建筑的发展。智慧建筑满足资源节约型和环境友好性的要求,在建筑建设和使用的全周期降低能耗。在建设过程中,通过建筑结构设计的优化、高性能设备的使用来有效减少能源的浪费;选择环保型材料用于建筑和装饰;建筑的智能监测减少能源浪费。经济维度:相较于传统建筑,智慧建筑的往往建设成本较高,但建筑物生命周期的使用成本
4、较低。智慧建筑会为用户带来更高的工作效率和生活质量,这些都能够转化为经济效益。用户体验:智慧建筑在建筑体内设置大量传感器、控制系统,能够精准获取用户的需求,了解用户的生活习惯,通过室内光源、湿度、新风等条件,为用户提供更加舒适的居住体验;室内卫生环境和健康服务设计,用于满足用户的卫生需求,为用户提供健康服务,对突发健康问题提供针对性的应急方案。建筑拥有更良好的安保措施,防止外来者入侵,对自然灾害有相应的应对设计,关注用户的生活隐私和生命安全。技术维度:智慧建筑使用了广泛的传感器设备及网络,配合综合控制系统完善智慧建筑的综合性功能。可能建筑系统和智慧的计算机软硬件和全覆盖的网络布置,实现了建筑的
5、实时监测和高效控制。物联网技术使建筑内的设备设施与系统之间实现互联,为动态管理和智慧管理提供了基础条件。大数据技术将智慧建筑各个设备所收集到的庞大数据进行快速生成,云计算将大数据中的各类数据进行分析,生成结果用于了解用户的个性化需求;BIM技术对建筑进行监测与分析,实现了智慧建筑的智慧运维。2 .人工智能在智慧建筑智能控制中的应用用户的热舒适性可通过暖通空调系统、个人舒适系统、智能百叶窗系统等系统进行控制。传统建筑中的空调暖通用于满足人体对温度舒适性的需求,但由于温度设置点不合理等问题造成了较大的能源浪费,使用者需要手动操纵设备,有时不适当的温度调节反而会影响人体健康。人工智能算法在热舒适控制
6、系统中的应用,能够根据物联网设备对温度、通风情况的监测,完成暖通空调的智能化控制,有效提高环境的热舒适性,节约能源的损耗。深度学习方法可用于电力系统的维护决策,深度前馈神经网络可用于预测使用者的热舒适,DDPG等方法的应用能够实现暖通空调系统的连续热状态控制,提升用户的热舒适性。个人舒适系统能够用于解决空调的系统存在的固有问题。暖通空调对某个区域范围内的环境进行加热或制冷,但有时人使用的空间仅占暖通空调影响范围的某部分,造成了能源的浪费。区域空间内不同用户的热舒适需求不同,暖通空调有时难以满足部分用户的个性化需求。个人舒适系统使用物联网传感器以及云中控制应用设备,系统的硬件设备包括温湿度传感器
7、、占用传感器、制冷制热设备、用于控制设备的执行器等。云中环境计算设备包括云中控制应用程序、数据库应用程序、Web应用程序、图形用户界面等,数据库中包含用户训练数据、过往的占用数据等,通过算法分析用户个人偏好,为用户提供更加舒适化的温感体验1o智能百叶窗系统通过闭环控制完成对百叶窗的自动控制,控制器根据传感器数值控制遮光设备。2.1 声环境的智能控制2.1.1 智能声环境控制类型噪声的智能控制:噪声会导致人们正常生产生活受到干扰,直接影响人们的生活质量和工作质量。超标准的强噪声严重危害人体健康,影响人的心理状态。人工智能应用在智能声环境的控制中,能够根据民用住宅室内允许噪声级的标准,监测室内声环
8、境。智慧建筑中智能声环境的控制需求包括声环境监测、声环境控制对象以及控制策略。智能双环境控制系统对室内的噪声声压级进行检测,判断噪声是否超标,检测噪声的来源,明确噪声产生的位置,便于确定相应的降噪措施。声环境的控制对象包括有源控制器、控制调节门窗开启程度、控制背景音乐。有源控制器是利用相消干涉原理,对噪声进行抵消;调节门窗是利用物理途径减弱声波的传递;背景音乐的控制是利用掩蔽效应,降低噪声的不利影响。音质的智能控制:音质的智能控制是对室内。播放音响的效果进行检测和判定,参照国家颁布的设计标准,检测室内音响声音信号声压级、清晰度、声场均匀度等指标。当检测结果不符合声学设计标准时,由智能控制系统对
9、相应声源源进行调节,直至音质达标。2.1.2 声环境智能控制系统智慧建筑声环境采集使用噪声自动探测仪对室内噪声进行检测,通过无线方式连接计算机,发送数据至处理器。处理器完成对室内不同位置声音的分析,判断噪声产生的原因,并确定降噪措施。处理器连接有源处理设备、门、电动窗、背景音乐系统。系统检测来自室内的噪声时,开启背景音乐功能;检测到室外噪声则控制电动门窗、电动窗帘等阻断噪声源2。2.1.3 人工智能对声环境的智能控制对室内使用空调风机、洗衣机以及楼梯间使用的电梯等产生的室内低频噪声,可使用人工智能的途径对其进行主动控制。智能控制算法中的BP神经网络与自适应滤波相结合。在空调风机管道处设置自适应
10、BP神经网络控制器,用于检测风机的振动信号,神经网络获取噪声信号后,由自适应滤波算法对风机产生的振动信号施加反向滤波,原噪声和自适应滤波器产生的滤波相互抵消,使得室内噪声满足噪声标准要求。2.2 光环境的智能控制2.2.1 自然照明的智能控制控制要素:智慧建筑光环境的控制要素包括照度、对比敏感度、颜色以及眩光。照度是单位面积内的光通量;对比敏感度是指视野亮度和背景亮度的差值与背景亮度之比;颜色对人体产生直接的心理效应,不同颜色能够使得人产生不同的心理感受,适宜的室内光源颜色和光环境内的物体颜色,能够为使用者带来积极、沉静等不同感受;眩光是指视野中的亮度分布或亮度范围不合适时,人体所产生的不舒适
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人工智能 智慧 建筑 中的 应用 研究
链接地址:https://www.desk33.com/p-1078576.html