12kV固体绝缘环网柜开关模块局部放电问题分析.docx
《12kV固体绝缘环网柜开关模块局部放电问题分析.docx》由会员分享,可在线阅读,更多相关《12kV固体绝缘环网柜开关模块局部放电问题分析.docx(8页珍藏版)》请在课桌文档上搜索。
1、固体绝缘环网柜的结构直接影响其开关模块施加电压后的电场分布,进而放电量在局部放电试验中得以体现。以12kV固体绝缘环网柜开关模块为研究对象,仿真分析了开关模块底部支撑镀金件结构在优化前后的电场强度变化,并通过其局部放电波谱图进行验证。试验结果表明,固体绝缘环网柜开关模块底部支撑锁金件结构对其局部放电影响显著,通过裁除开关模块出线侧支撑镀金件的部分实体,加大了开关模块出线位置与支撑镀金件边缘间的距离,可以改善开关模块及整柜的电场分布,进而降低固体绝缘环网柜的局部放电量。本文所提出的降低局部放电量方法,为提升固体绝缘环网柜的绝缘水平和使用寿命提供了思路和解决方案。作为配电环节的重要电气设备,环网柜
2、,特别是固体绝缘环网柜(SoIid-insulatedringmainunit,SlRMU)(以下简称固体柜”)因体积小、性能参数高、操作灵巧、可扩展性高等优点逐渐成为高低压成套设备的主流产品。开关模块是固体柜的核心单元,其绝缘水平是影响整柜性能的重要指标,这不仅与绝缘材料的选取、铜件的表面处理和内部屏蔽网的布置有关,更与柜体银金件结构的合理布置有密切关系。为深入探究固体柜局部放电(PartialdiSCharge,PD)问题,国内外专家学者都进行了较为广泛的研究,也取得了丰富的研究成果。目前国内外对固体柜局部放电问题的分析主要是针对绝缘件本身绝缘性能的分析及优化,未从柜体结构设计的角度入手分
3、析局部放电问题,深入分析柜体结构对其局部放电的影响是目前亟待解决的关键问题。故本文结合试验案例,以固体柜开关模块为研究对象,分析其底部支撑的银金件对整柜绝缘性能的影响,进而为固体柜结构优化提供参考。1电位计算原理(略)物体的绝缘性能与其所处电场相关,物体周围电场强度越大,其绝缘能力越差。故在仿真分析中可以以物体电场强度来衡量其绝缘性能。固体柜局部放电电场问题基本符合准静态场模型,故有限元电场仿真分析软件可采用静电场对其进行求解分析。2仿真分析2.1 案例背景本文所研究的12kV固体柜外形如图1所示。该固体柜由开关模块、操动机构室、仪表室、支撑开关模块的银金件、泄压通道及其他辅助配件等组成。在对
4、开关模块的导体部分施加1.2倍额定电压的工频耐压试验中,相间、对地和断口间均存在局部放电过大问题,利用便携式超声波局部放电测试仪检测,将局部放电异常部位定位至泄压通道上侧部位。该位置主要有开关模块、底部支撑的银金件和安装固定螺栓等。2.2 仿真分析为深入分析该固体柜局部放电问题,对该局部放电异常位置进行分析。在电位仿真原理的基础上,基于仿真分析软件对该结构进行电场有限元分析,网格的划分结果如图2所示。仿真分析中,三相套管和底部支撑的镀金件所加电位为0,母线侧所加电位为14.4kV0图1固体柜外形图图2网格划分结果该局部放电异常部位中,开关模块与底部支撑银金件的装配关系如图3所示,主要针对这两部
5、分进行绝缘分析。图3开关模块与底部支撑锁金件的装配关系在图2网格划分的基础上对开关模块进行电场仿真,结果如图4所示。为直观对比分析结构优化前后开关模块的电场分布差异,在图4中设置显示时,将该区间电场强度的上限设置在1.5xlO6Vm0E(Vm)三1.50001061.39351061.28701061.I8O51O61.0740106I9.67561058.61071057.54591056.4810IO55.4I6I1O54.35I21O53.28631052.22151051.15661059.1702103图4优化前开关模块表面电场分布由图4可知,在结构优化前,开关模块表面最大电场强度仿
6、真结果为3.1493106Vm,而工程上一般以电场强度大于等于3xlO6Vm作为发生局部放电的判据,且底部支撑镀金件的内边缘电场较周围其他区域大。由此表明,开关模块表面的电场分布跟底部支撑镀金件的结构及布置有关系。从图4也可以看出,电场强度较大区域为靠近出线孔位置。为解决上述问题,将图3(a)中开关模块出线侧支撑银金件的部分实体裁除,加大环氧内部的出线导体与支撑镀金件边缘之间的距离,同时在开关模块和底部支撑锁金件间增加绝缘板进行绝缘处理,即将处于地电位的、金属制作的支撑锁金件远离开关模块的环氧部分。优化后底部支撑锁金件结构如图5所示,此时开关模块表面电场分布如图6所示。图5优化后的底部支撑锁金
7、件结构8.62651057.5643IO56.5020l01.50001061.3938IO6 l.2876106 I.I813IO63.3153IO52.253OIO51.I9O81O51.2855104%(Vm)图6优化后开关模块表面电场分布由图6可知,结构优化后,开关模块表面电场分布相对均匀,此时开关模块表面最大电场强度为8.78105Vm,该数据远小于发生局部放电的临界电场强度3106Vmo对比图4和图6可知,开关模块底部支撑银金件结构优化前,模块表面电场分布呈现极不均匀状态,且最大电场与最小电场相差较大;底部支撑银金件结构优化后,模块表面电场分布较为均匀,且无明显的电场突变。显而易见
8、,在结构优化前,开关模块的电场强度有明显超出空气放电的电场强度;而结构优化后,开关模块的电场强度已经控制在要求范围内。3试验验证为进一步验证底部支撑锁金件的结构对固体柜开关模块局部放电的影响,分别对优化前后的固体柜整机、开关模块进行了局部放电试验,所用开关模块封闭在固体绝缘材料内,内部已做绝缘屏蔽处理,其自身局部放电趋近于0,完全满足要求。该局部放电试验在无背景局部放电的屏蔽室内进行,环境为空气,施加试验电压为1.2倍额定电压,即14.4kV,局部放电值要求小于等于20pC。该试验具体情况如下:1)结构优化前整机局部放电试验在底部支撑镀金件未优化时,固体柜外形图如图1所示,局部放电波形如图7所
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 12 kV 固体 绝缘 环网柜 开关 模块 局部 放电 问题 分析
链接地址:https://www.desk33.com/p-1080429.html