数字碳中和工业篇(2024年).docx
《数字碳中和工业篇(2024年).docx》由会员分享,可在线阅读,更多相关《数字碳中和工业篇(2024年).docx(38页珍藏版)》请在课桌文档上搜索。
1、一、数字技术成为新型工业化绿色化重要推动力1(一)工业是我国经济绿色低碳转型重点领域1(二)数字技术助力提升新型工业化“含绿量”2二、发达国家积极探索数字技术助力工业脱碳3(一)美国:围绕数字减碳强化顶层设计和资金支持3(二)欧盟:制定战略规划引领数字和绿色双重转型4(三)日本:强调政策融合推动数字化赋能绿色发展6三、数字技术将在工业领域持续释放降碳潜能7(一)数字技术助力碳减排科学内涵和思路框架7(二)数字技术对重点流程制造业减碳潜力分析10四、数字技术赋能工业减碳应用场景不断丰富17(一)重点行业层面17(二)绿色制造层面23(三)企业主体层面28五、政策建议29(一)加强政策顶层设计,推
2、动数绿融合发展29(二)强化关键要素支撑,构建优质赋能基础30(三)持续推动技术攻关,强化技术支撑能力31(四)加大财税金融支持,降低投资改造成本32(五)提升企业赋能动力,鼓励企业赋能实践33(六)完善数字化碳管理,切实提高赋能效果34图目录图1数字技术赋能工业碳减排机理框架9图2数字技术助力碳达峰碳中和的思路框架10图3数字技术助力钢铁行业碳减排潜力12图4数字技术助力钢铁行业碳减排增速13图5数字技术助力石化化工行业碳减排潜力14图6数字技术助力石化化工行业碳减排增速15图7数字技术助力水泥行业碳减排潜力16图8数字技术助力水泥行业碳减排增速17图9数字技术碳减排潜力评估框架36图10数
3、字技术普及率曲线37一、数字技术成为新型工业化绿色化重要推动力(一)工业是我国经济绿色低碳转型重点领域多年来,工业始终是我国经济发展的主力军。我国工业发展迅速,工业体系不断健全,总体规模不断扩大,2010年制造业产出超越美国,成为全球第一制造大国,实现了由小向大的历史性转变。我国拥有41个工业大类、207个工业中类、666个工业小类,是全世界唯一拥有联合国产业分类中全部工业门类的国家。在500余种主要工业产品中,有220多种产量位居世界第一。2022年,全部工业增加值突破了40万亿元大关,占GDP比重达到了33.2%。然而,工业也是我国能源消费和碳排放重点领域。一方面,“十三五”期间,我国工业
4、领域节能提效工作取得积极进展,工业企业节能降耗成果显著。另一方面,工业领域能源消费总量仍占全国能源消费总量的60%以上,钢铁、有色金属、建材、石化化工等重点行业碳排放量占工业领域碳排量的近80%。随着新一轮科技革命的突飞猛进和应对气候变化的深入推进,全球产业结构和布局深度调整,我国处于制造大国向制造强国迈进的重要关口期。工业绿色低碳转型成为我国实现碳达峰碳中和目标和新型工业化的必经之路。在“双碳”目标下,工信部等3部门印发了工业领域碳达峰实施方案,钢铁、有色、建材、石化化工4个行业均制定了行业碳达峰方案,明确了工业碳达峰的目标、任务、途径和措施。同时,我国聚焦高端化、智能化、绿色化,深入推进数
5、字化与绿色化融合创新,加快传统工业转型升级,形成节约资源和保护环境的绿色低碳生产方式,促使绿色低碳成为新型工业化的生态底色。(二)数字技术助力提升新型工业化“含绿量”随着新一轮科技革命和产业变革深入发展,互联网、大数据、云计算、人工智能、区块链等数字技术创新活跃,数字技术和绿色低碳产业深度融合,推动产业结构由高碳向低碳、由低端向高端转型升级。数据作为关键生产要素的价值日益凸显,深入渗透到经济社会各领域全过程,随着算力、算法、模型、数据等技术底座不断夯实、数字基础设施和服务体系不断完善,数字化转型深入推进,传统产业加速向高端化、智能化、绿色化方向转型升级,新产业、新业态、新模式蓬勃发展,推动生产
6、方式、生活方式发生深刻变化,数字技术成为重组全球要素资源、重塑全球经济结构、改变全球竞争格局的关键力量。近年来,我国高度重视数字经济发展,重点部署数字技术赋能全社会降碳。工业领域碳达峰实施方案指出要推动数字赋能工业绿色低碳转型,强化企业需求和信息服务供给对接,加快数字化低碳解决方案应用推广。信息通信行业绿色低碳发展行动计划(2022-2025)将“赋能全社会降碳促达峰”作为重点任务之一,提出以各行业数字化、智能化、绿色化转型需求为导向,以产业绿色低碳转型、居民低碳环保生活和城乡绿色智慧发展等领域为重点,加快提升数字技术与垂直行业应用深度融合的服务供给能力,助力经济社会数字化绿色化转型。此外,我
7、国确定在河北省张家口市、辽宁省大连市、黑龙江省齐齐哈尔市、江苏省盐城市、浙江省湖州市、山东省济南市、广东省深圳市、重庆高新区、四川省成都市、西藏自治区拉萨市等10个地区和城市开展首批数字化绿色化协同转型发展(双化协同)综合试点,以试点方式推动数字技术与绿色低碳产业深度融合,提升双化协同的能力和水平。数字技术的快速发展为工业绿色低碳转型提供了新路径。通过集成利用先进的数字技术,促进研发设计、生产制造、经营管理、运维服务等全方位全链条的升级改造,推动工业向环境影响小、资源利用高、经济效益好的绿色化方向发展,实现生产效率与碳效率的双提升。根据全球电子可持续发展推进协会(GeSI)研究结果,在未来十年
8、内,数字技术将通过赋能能源、制造业等行业减少20%的全球碳排放。数字技术、数字基础设施与传统产业的融合将进一步推动产业数字化和绿色化转型,释放全领域数据价值,提高全过程生产效率,降低全链条能源消耗,实现发展和减排的双赢,助力推动全社会高质量发展。二、发达国家积极探索数字技术助力工业脱碳(一)美国:围绕数字减碳强化顶层设计和资金支持美国在推进本国净零排放目标整体过程中高度重视数字技术的融合应用,特别是围绕数据、标准、技术、资金等制定了丰富的政策工具,助力绿色低碳方向的数字技术和应用创新推广。一是充分发挥顶层设计对行业数字化减碳的支撑和引领作用。2022年美国能源部发布工业脱碳路线图,确定了减少美
9、国制造业工业排放的4个关键途径及其研发和示范需求,在提高能效关键路径中提出在系统级优化工业过程性能的能源管理方法,以及来自制造过程加热、锅炉和热电联产的热能系统管理和优化,同时加强智能制造和先进的数据分析,以提高制造过程中的能源生产力,从而有效提升制造业利用数字技术实现节能减排效率。二是提供助力减碳模型开发/智能决策的高质数据集和大数据工具。针对当前行业由于应用越来越多的现代设备设施、仪器和高性能计算机而生成传统工具难以有效解析的海量数据,2021年美国能源部拨款2900万美元用于开发应对清洁能源、气候和国家安全挑战的大数据工具,其中800万用于支撑超大型数据集系统简化,2100万用于支持识别
10、相关数据模型,服务能源领域智能决策,对提高能源领域利用数字技术开发节能减碳模型具有重要意义。三是为企业利用数字技术促进净零排放技术创新提供研发补贴。在研发补助方面,2020年美国能源部宣布提供1600万美元用于机器学习和人工智能高级研究,服务各领域智能化、可持续发展;在奖励资金方面,2020年美国能源部设立10亿美元的“新人工智能奖项”,对12个提高效率、降低成本和能耗的人工智能项目给予资金奖励,同时美国能源部“可持续发展奖还对一系列成效突出的数据中心绿色化集约化项目予以表彰;在贷款担保方面,能源部提供85亿美元贷款担保,支持利用数字技术减少或隔离温室气体排放。(二)欧盟:制定战略规划引领数字
11、和绿色双重转型欧盟将利用数字技术促进行业脱碳和可持续发展纳入投融资、研究创新、国际合作等政策,特别强调通过相关政策,引导和支持企业通过数字转型提高应对气候变化的能力。一是在战略规划方面,重视工业数字化绿色化双重转型。2019年欧盟委员会发布欧洲绿色新政,明确提出工业领域要充分挖掘数字转型的潜力,使人工智能、5G、云计算和边缘计算及物联网等数字技术尽快在欧盟应对气候变化和保护环境的政策中发挥重要作用。为持续推动工业领域双化协同转型,2020年欧盟委员会还发布了欧洲工业战略旨在提升欧盟全球竞争力并带动欧洲绿色工业和数字化的发展,助推欧洲向更加可持续、数字化和更具全球竞争力的经济转型。2023年10
12、月欧盟委员会通过了战略能源技术(SET)计划的修订,旨在将最初的战略目标与欧洲绿色协议、REPowerEU计划和绿色新政工业计戈J(特别是“净零工业法案”)相协调,此次修订,欧盟委员会将纳入跨领域问题的新优先事项,包括根据社会需求、数字化和市场准入度定制的可持续性设计、技能开发、研究和创新。二是利用大数据、区块链等数字技术提高碳市场可信度和碳交易效率。欧洲能源交易所EEX建立了电子碳交易平台,通过支撑线上登记/交易/拍卖、提供实时交易数据,助力政策优化调整、模拟交易过程,选择最优拍卖方案等功能,助力本国碳交易制度实施,最终利用数字技术更有效地利用市场机制促进电力、钢铁、玻璃、水泥等行业减碳。三
13、是成立绿色化数字化联盟,更好地集聚行业力量支撑政府决策和引导产业发展。欧盟召集埃森哲、达索、爱立信、施耐德电气、谷歌、西门子、思科等26家ICT龙头企业成立欧洲绿色化数字化联盟(EGDC),2021年签署支持欧盟绿色和数字化转型宣言,同时与龙头企业合作制定能源、制造、交通、农业、建筑等领域绿色化数字化转型指导方案。四是加强重点领域数字技术应用基金支持,在创新项目中部署利用数字化减少行业碳足迹研究。2020年欧盟委员会与欧洲投资基金宣布部署风险投资基金,促进人工智能、机器人等技术在工业领域的推广,降低生产能耗和碳排放。2021年欧盟“地平线欧洲”(HOriZOnEurope)计划宣布未来两年将提
14、供7.24亿欧元拨款,支持制造业和建筑业的数字化并减少行业碳足迹。2023年12月,欧盟投入近6亿欧元支持跨境能源基础设施项目,包括支持五个二氧化碳网络项目、两个电力部门项目和一个储气库项目,其中电力部门项目包括1亿欧元的智能电网项目和122万欧元的电力互连线加固项目等,以实现更智能的电网、效率以及创新技术和解决方案。(三)日本:强调政策融合推动数字化赋能绿色发展当前日本面临着绿色发展、区域发展、生产力增长、低出生率和人口老龄化等一系列挑战,亟需推动数字化来实现可持续发展。日本数字化赋能工业绿色发展注重战略、法规、标准顶层设计的融合创新。一是制定实施国家战略,最大限度地推进绿色社会发展。202
15、0年12月25日日本发布2050年碳中和绿色增长战略,明确了“2050年日本实现净零排放的碳中和目标,基于预算、税制、金融、监管、国际合作5个政策工具,将在海上风电、电动汽车、氢能等14个重点领域推进减排,提出了具体的发展目标和重点任务。半导体和通信行业作为14个重点领域之一,主要包括两个方面的内容:一是利用数字化提高能源消费的效率和减少二氧化碳排放;二是数字设备和信息通信自身的节能和环保,2030年所有新建数据中心节能30%。同时还提到要加快制定制造业、企业和区域的数字化方案,推进利用数字技术促进地区二氧化碳减排示范。二是完善公共采购、法规、标准化等扩大需求引导。利用数字技术积极发展碳交易市
16、场,促进汽车、半导体等行业采购无碳电源。统一道路运输法高压气体安全法等相关法规,促进电动汽车、氢能汽车普及,并基于此促进网联汽车加速发展。推进下一代太阳能电池性能评估系统等相关技术标准国际化,为国内碳中和技术、产品争取国际市场。三是引导在日企业夯实数字产业基础,发挥技术和生产方面的核心作用。2021年6月日本经济产业省首次发布半导体数字产业战略,从半导体、数字基础设施、数字产业三个维度提出了总体和细分领域的战略目标以及施策方向,夯实基础提升话语权,确保经济与环境共优,同步推进数字化和绿色技术。在半导体领域,支持数字化和绿色投资的设计开发,推进半导体技术的绿色革新;在数字基础设施领域,建设绿色数
17、据中心,推广使用可再生能源发电,降低数字化转型带来的能源消耗;在数字产业领域,绿色政策和能源政策融合实施,力口强“数字X绿色”项目管理,统筹管理推动碳中和的数字技术成果。三、数字技术将在工业领域持续释放降碳潜能(一)数字技术助力碳减排科学内涵和思路框架数字技术助力减少碳排放,是指以数据资源作为关键生产要素,以现代信息网络为重要载体,以新型通信技术融合应用、全要素数字化转型为重要推动力,以碳达峰碳中和为重要目标,以减污降碳扩绿增长为重要抓手,提升能源效率、资源效率、环保效率和生产效率的同时减少碳排放,推动新业态、新商业模式、新产业加快发展,促进形成绿色的生产方式和生活方式。数字化对环境影响的一个
18、重要方面就是赋能效应,即通过在经济和社会活动中使用数字技术而产生的效应,数字技术一方面能够减少不必要活动;另一方面能够替代、优化、非物质化原耗能的功能,或者创造新的功能,从而提高效率,即通过减少、替代、优化、非物质化、创新经济活动从而有益于环境。赋能的流程包括绿色低碳相关的信息获取、传递、存储、加工和标准化五个环节。其基本逻辑可以归纳为“连接挖掘优化、管控增效”,其作用机制分别是改变价值创造方式、提高价值创造效率、拓展价值创造载体和增强价值获取能力。具体而言,数字技术使用户以多种形式参与从研发到生产等价值创造过程,改变企业创造价值的方式;数字技术用数据逻辑强化了企业对生产、运营的管控,提高价值
19、创造的效率;新一代信息通信技术实现了数据在产业链中的集成和流动,促进企业间的专业化分工,形成价值网,拓展了价值创造的载体;数字技术弱化了产业边界,催生出“跨界等新型商业模式,增强了企业的价值获取能力。对于工业而言,数字技术可赋能工业生产企业从产品设计研发到生产制造,再到仓储运输、回收利用的全流程碳减排,实现工业数字化绿色化融合发展(图1)。通过利用云计算、大数据、物联网等数字技术,对产品设计数据、能耗数据、资源消耗数据、设备运行数据等多样化数据进行分类整合、统计分析,搭建生产过程模拟模型、能耗预测模型、碳排放预测模型、环境质量模型等数据模型,从而实现能源实时调度、设备联动运行、智能排产、碳管理
20、、环境质量管理等功能,提升行业生产效率、能源效率、资源效率和环保效率。应用场景开发与落地 绿色低碳需求提升ffl妄器(能器化)d髓行)G翻产)(碳管理)?),物毒网(网)(网)C髓S)(管理网)*三*(r)()()j)O数字化设计研发:1生产制造r仓储运输/使用f回收利用j来源:中国信息通信研究院图1数字技术赋能工业碳减排机理框架数字技术助力碳达峰碳中和的总体思路包括:一是数据摸底与情景预测,利用数字技术开展数据采集、传输与挖掘,摸清“碳家底”,开展碳排放数据的盘查,实施碳排放数据监测、统计、核算、核查,综合考虑碳排放现状、技术发展、碳减排目标等方面,搭建能源资源需求模型、碳排放核算模型等,分
21、析碳排放来源及减碳潜力;二是制定战略和明确路径,基于碳减排潜力,综合考虑技术进步、资金、人才等方面,设计科学、系统的“双碳”顶层规划,确定碳减排目标,制定可操作、可落地的碳减排路径和行动计划;三是行业层面分业施策,利用大数据、云计算等技术,深入分析行业碳排放规律,结合行业发展特点,探索分行业碳减排方案和数字技术应用场景,完善碳排放管理体系,明确各部门职责权利,提供机制保障;四是企业层面落地实施,在源头端、过程端、末端、管理端全过程实施碳减排行动,提升生产效率、能源效率、资源效率和环保效率。在此过程中,能源互联网、工业互联网作为技术和产业融合的重要载体,5G、大数据与云计算、人工智能、物联网、数
22、字挛生、区块链等数字技术在支撑碳达峰碳中和目标实现过程中将发挥数据分析、模拟预测、数据存储等重要作用(图2)。能源互联网、MS联网,技术与产业深度融合的18体来源:中国信息通信研窕院图2数字技术助力碳达峰碳中和的思路框架(二)数字技术对重点流程制造业减碳潜力分析数字技术已与钢铁、石化化工、建材等重点行业不断渗透融合,为工业带来显著的减排效应,推动工业数字化绿色化协同转型。基于目前数字技术在流程制造业中的应用情况,现有的数字技术主要通过能源管控、生产过程自动化控制、副产物回用、系统集成控制四大方面的应用助力工业碳减排。基于此,采用数字技术碳减排潜力评估模型评估在2025年2035年之间现有的数字
23、技术对钢铁、石化化工、建材三大重点流程制造业的碳减排潜力。结果表明,未来十年,现有的数字技术将分别助力钢铁、石化化工、建材三大重点行业减少5%20%、6%16%、3%9%的碳排放,赋能潜力正处于快速增长期。需要指出的是,一方面该模型仅考虑已经在用的数字技术,未来随着各种数字技术的快速迭代、新型数字技术的涌现更多应用场景的落地实施以及更大力度推进实施,数字技术对钢铁、石化化工、建材三大高载能流程制造业的碳减排潜力可能会更大;另一方面,和流程制造业相比,数字技术在离散制造业更容易实施,应用场景更丰富多样,从而更能彰显数字赋能碳减排的积极作用,流程制造业由于自身的工艺机理决定了其低碳转型难度更大,因
24、此,数字技术对流程、离散制造业的减碳潜力不同,流程制造业低于离散制造业,对于离散制造业尤其是能源消耗以电力为主的装配制造业,数字技术减碳的潜力可能更大。数字技术碳减排潜力评估模型简介见附件一。1 .钢铁行业对于钢铁行业而言,现有的数字技术对行业的碳减排潜力在2025年、2030年和2035年分别达到Ll亿吨、1.7亿吨和2.3亿吨左右(图3)。其中,自动控制类技术的碳减排潜力相对较大,约占数字技术总碳减排潜力的41%,这主要是由于钢铁行业的碳排放集中在高炉炼铁、烧结等重点工序,对重点工序的自动控制类技术可大幅节约能源消耗;其次,副产物回用类技术的碳减排潜力约占数字技术总碳减排潜力的28%左右,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数字 中和 工业 2024
链接地址:https://www.desk33.com/p-1114488.html