省考公务员-山西-行政职业能力测验-第三章数量关系-第三节组合与概率-.docx
《省考公务员-山西-行政职业能力测验-第三章数量关系-第三节组合与概率-.docx》由会员分享,可在线阅读,更多相关《省考公务员-山西-行政职业能力测验-第三章数量关系-第三节组合与概率-.docx(27页珍藏版)》请在课桌文档上搜索。
1、省考公务员-山西-行政职业能力测验-第三章数量关系-第三节组合与概率-单选题1.5,3,7三个数字可以组成几个三位数?()A8个B.6个C.4个D.10个正确答案:B参考解析:百位上的(江南博哥)数可以在5,3,7三个数中选一个,有3种选法;在确定百位上的数后,十位上的数只有两种选法;百位上和十位上的数确定以后,个位上的数只有一种选法。所以三位数的组成方法共有3X2X1=6种。单选题2.甲袋中有3个白球2个黑球,乙袋中有4个白球4个黑球,现从甲袋中任取2球放人乙袋,再从乙袋中取一个球放人甲袋。已知从乙袋取出的是白球,问从甲袋取出的球是一黑一白的概率为多少?()3A. 5B. n6C. H1D.
2、 2正确答案:A参考解析:从乙袋取出的是白球,这一点对于甲袋取出的球的概率没有影响。因此,从甲袋取出2个球,有U种情况;取出的球是一黑一白,有3义2=6种6=3情况。所以,取出的球是一黑一白的概率为五一觉单选题3.将三个均匀的、六面分别标有1、2、3、4、5、6的正方体同时掷出,最上面出现的数字分别为a、b、c,则a、b、C正好是某直角三角形三边长的概率是()。1A. 3T?1B. 721C. 361D. Ti正确答案:C参考解析:将三个正方体掷出,出现的所有情况数为6义6义6=216种,能组成直角三角形的三边长的只能是3、4、5,一共有=6种情况,所以所求概率为6_1216-36o单选题4.
3、甲、乙两个科室各有4名职员,且都是男女各半。现从两个科室中选出4人参加培训,要求女职员比重不得低于一半,且每个科室至少选1人。问有多少种不同的选法?()A. 67B. 63C. 53D. 51正确答案:D参考解析:按照女职员的人数分类:女职员人数为4,即4个职员都是女性,这种情况只有1种可能性;女职员人数为3,此时对应的选择方法实际是先从4个女职员中选出1个不参加培训,再从4个男职员中选出一个参加培训,因此情况共有4X4=16种;女职员人数为2,此时对应的选择方法是先从4个女职员中选出2个参加培训,再从4个男职员中选出2个参加培训,去掉4个人都来自于同一科室的情况,情况共有UU-2=34种。因
4、此总的选法共有1+16+34=51种。单选题5.某班同学要订A、B、C、D四种学习报,每人至少订一种,最多订四种,那么每个同学有多少种不同的订报方式?()A.7种B. 12种C. 15种D. 21种正确答案:C参考解析:按照订阅的种数不同,可以分为4类,分别为订阅一、二、三、四种,其对应方法数分别为U,c;,ci,U,因此总的种数为c.+U+U+c:=15种。单选题6.某儿童艺术培训中心有5名钢琴教师和6名拉丁舞教师,培训中心将所有的钢琴学员和拉丁舞学员共76人分类平均地分给各个老师带领,刚好能够分完,且每位老师所带的学生数量都是质数。后来由于学生人数减少,培训中心只保留了4名钢琴教师和3名拉
5、丁舞教师,但每名教师所带的学生数量不变,那么目前培训中心还剩下学员多少人?()A. 36B. 37C. 39D. 41正确答案:D参考解析:设每个钢琴教师带X个学生,每个拉丁舞教师带y个学生,由题意可得5x+6y=760则X为偶数,且X与y均为质数,因此x=2,代入得y=Ilo因此在学生人数减少后,还剩下学员4X2+3X11=41个。单选题7.5箱苹果,两两放一起称重量(公斤)分别为111、112、113、114、115、116、117、118、119、121。则最重的一箱是多少公斤?()A.58B. 62C. 64D. 72正确答案:B参考解析:从五箱中任挑两箱的方法数为U=IO,又题中的1
6、0个重量不同,说明五箱苹果的重量各不相同。设重量从轻到重分别为甲、乙、丙、丁、戊,由题意可知甲+乙=II1,丁+戊=I21,戊+丙=119;而所有10个数字之和为5箱苹果总重的4倍,即甲+乙+丙+丁+戊=(111+112+113+114+115+116+117+118+119+121)4=289公斤。因此戊=(甲+乙)+(丁+戊)+(戊+丙)一(甲+乙+丙+丁+戊)=111+121+119289=62公斤。单选题8.小王忘记了朋友的手机号的最后两位数,只记得倒数第一位是奇数,则他最多要拨号多少次才能保证拨通?()A. 90B. 50C. 45D. 20正确答案:B参考解析:由题意可知,最后一位
7、有5种可能;倒数第二位有10种可能。因此总的组合方法有5X10=50种。单选题9.一张节目表上原有3个节目,如果保持这三个节目的相对顺序不变,再添加2个新节目,有多少种安排方法?()A. 20B. 12C. 6D.4正确答案:A参考解析:先安排第一个节目,因为原3个节目形成了共4个间隔,故有4种方法;插入第一个节目后,节目单上有4个节目,形成了共5个间隔,再将第二个节目插入,共有5种方法。因此总的安排方法有4X5=20种。单选题H0.一个正八面体两个相对的顶点分别为A和B,一个点从A出发,沿八面体的棱移动到B位置,其中任何顶点最多到达1次,且全程必须走过所有8个面的至少1条边,问有多少种不同走
8、法?()A. 8B. 16C. 24D. 32正确答案:A参考解析:从A点到中间四个顶点,有4种选择;到达任一个顶点后,可横向左转!圈,或横向右转(圈,然后再到达B点,有2种选择。因此共有2X4=8种走法。单选题IL小王的手机通讯录上有一手机号码,只记下前面8个数字为15903428o但他肯定,后面3个数字全是偶数,最后一个数字是6,且后3个数字中相邻数字不相同,请问该手机号码有多少种可能?()A. 15B. 16C. 20D. 18正确答案:B参考解析:倒数第二个数字是非6偶数,共有4种可能;倒数第三个数字是不与倒数第二个数字重复的偶数,也有4种可能。因此该手机号码有4X4=16种可能。单选
9、题12.要求厨师从12种主料中挑出2种,从13种配料中挑出3种来烹饪菜肴,烹饪方式共7种,最多可做出多少道不一样的菜肴?()A. 131204B. 132132C. 130468D. 133456正确答案:B“_12x11参考解析:从12种主料中挑出2种,共小一为T66种方法;从13种配料中挑出3种,共Fk286种方法;从7种烹饪方式中选一种,共7种方法。因此总的方法数为66X286X7种,尾数为2,因此B项正确。单选题13.一公司销售部有4名区域销售经理,每人负责的区域数相同,每个区域都正好有两名销售经理负责,而任意两名销售经理负责的区域只有1个相同。问这4名销售经理总共负责多少个区域的业务
10、?()A.4B.6C.8D.12正确答案:B参考解析:每个区域正好有两名销售经理负责,则一个区域对应2个经理为一组;而由任意两名销售经理负责的区域只有1个相同可知,每2个经理一组仅对应一个区域。故其区域数相当于从4个经理中任选2个有多少种组合,一种组合对应一个区域,因此共有U=6个区域。单选题14.某工作组有12名外国人,其中6人会说英语,5人会说法语,5人会说西班牙语;有3人既会说英语又会说法语,有2人既会说法语又会说西班牙语,有2人既会说西班牙语又会说英语;有1人这三种语言都会说。则只会说一种语言的人比一种语言都不会说的人多多少人?()A.1人B.2人C.3人D5人正确答案:C参考解析:题
11、中文氏图如下,可知只会说一种语言的有5人,而一种语言也不会说的有2人,因此只会说一种语言的人比一种语言都不会说的人多52=3人。语正牙诵英讲*VV嘛,说/l/2l3单选题15.某班有35个学生,每个学生至少参加英语小组、语文小组、数学小组中的一个课外活动小组。现已知参加英语小组的有17人,参加语文小组的有30人,参加数学小组的有13人。如果有5个学生三个小组全参加了,问有多少个学生只参加了一个小组?()A. 15人B. 16人C. 17人D. 18人正确答案:A参考解析:如下图所示,以A、B、C分别表示参加英语小组、语文小组、数学小组的人数。分别将白色、浅灰色、深灰色区域(5人)看作一个整体,
12、设白色、浅灰色部分人数分别为x、y。由总人数35人可知x+y+5=35;参加三个小组的人数分别为17、30、13,若将此三个数字直接相加,白色、浅灰色、深灰色部分人数分别被计算1、2、3次,则有x+2y+5X3=17+30+13联立两式得x=15,y=15,即只参加一个小组的人数为15人。13730单选题16.某中学在高考前夕进行了四次语文模拟考试,第一次得90分以上的学生为70%,第二次是75%,第三次是85%,第四次是90%,请问在四次考试中都是90分以上的学生至少是多少?OA. 40%B. 30%C. 20%D. 10%正确答案:C参考解析:四次没考到90分以上的学生分别占30%、25%
13、,15%,10%,要使得四次都是90分以上的学生最少,应使某次没考到90分以上的学生尽可能多,即四次没考到90分以上的学生人数互不相交,因此四次都在90分以上的学生至少有130%25%15%1096=20%。单选题17.调研人员在一次市场调查活动中收回了435份调查问卷,其中80%的调查问卷上填写了被调查者的手机号码。那么调研人员至少需要从这些调查表中随机抽出多少份,才能保证一定能找到两个手机号码后两位相同的被调查者?()A. 101B. 175C. 188D. 200正确答案:C参考解析:在435份调查问卷中有435X20%=87份没有写手机号;且手机号码后两位可能出现的情况一共IOXlO=
14、100种,因此要保证一定能找到两个手机号码后两位相同的被调查者,至少需要抽取87+100+1=188份。单选题18.一个袋内有100个球,其中有红球28个、绿球20个、黄球12个、蓝球20个、白球10个、黑球10个。现在从袋中任意摸球出来,如果要使摸出的球中,至少有15个球的颜色相同,问至少要摸出几个球才能保证满足上述要求?()A.78个B.77个C75个D.68个正确答案:C参考解析:设手中有100个球,尽量不发出15个颜色相同的球。先将每种颜色的球发出14个,不足14个的全部发出,则共计发出14+14+12+14+10+10=74个,但剩下的球中任意再发出1个就满足要求了。因此至少要摸出7
15、5个球。单选题19.10个完全一样的杯子,其中6个杯子装有10克酒精,4个杯子装有10克纯水。如果从中随机拿出4个杯子将其中的液体进行混合,问最终得到50%酒精溶液的可能性是得到75%酒精溶液的可能性的多少倍?()d4B. 36C. 59D. 8正确答案:D参考解析:4杯溶液兑成50%的酒精溶液,需要2杯酒精2杯水,选择方法数为Gu=90种;4杯溶液兑成75%的酒精溶液,需要3杯酒精1杯水,选择方法数90=9为CU=80种。因此前者的可能性是后者的母一倍。单选题20.小王开车上班需经过4个交通路口,假设经过每个路口遇到红灯的概率分别为0.1,0.2,0.25,0.4,则他上班经过4个路口至少有
16、一处遇到绿灯的概率是()。A. 0.899B. 0.988C. 0.989D. 0.998正确答案:D参考解析:至少有一处遇到绿灯的反面情况是四个路口均为红灯,而四个路口全部为红灯的概率是0.1X0.2X0.25X0.4=0.002,因此至少一处遇到绿灯的概率为1-0.002=0.998c单选题21.甲与乙准备进行一个游戏:向空中扔三枚硬币,如果它们落地后全是正面向上或全是反面向上,乙就给甲钱;但若出现两正面一反面或两反面一正面的情况,则由甲给乙钱。乙要求甲每次给10元,那么从长远来看,甲应该要求乙每次至少给()元才可考虑参加这个游戏。A. 10B. 15C. 20D. 30正确答案:DHi=
17、1参考解析:三枚硬币全是正面向上的概率为,、5义5一菰同样三枚全部反面向1.1_=3上的概率也是i,所以甲获胜的概率是1;乙获胜的概率为Z4,是甲的3倍。为使得两个人的期望收益相等,甲应该要求乙每次至少给10X3=30元,才可考虑参加这个游戏。单选题22.甲、乙两人约定在下午4点到5点间在某地相见。他们约好当其中一人先到后一定要等另一人15分钟,若另一人仍不到则可以离去,则甲、乙能相见的概率为()。正确答案:A参考解析:设甲到达时间为4点X分,乙到达时间为4点y分。如下图,只有当Ix-yIW15时两者可相见,即图中阴影部分。甲乙能相见的概率即阴影部60-45=7分面积占总面积的比,其值为6球1
18、6oy单选题23.小孙的口袋里有四颗糖,一颗巧克力味的,一颗苹果味的,两颗牛奶味的。小孙任意从口袋里取出两颗糖,他看了看后说,其中一颗是牛奶味的。问小孙取出的另一颗糖也是牛奶味的可能性(概率)是多少?()D.6正确答案:C参考解析:两颗都是牛奶味的糖只有一种情况,而其中至少一颗是牛奶味的糖共有5种情况:(牛奶味1、苹果味),(牛奶味1、巧克力味),(牛奶味2、苹果味),(牛奶味2、巧克力味),(牛奶味1、牛奶味2)。因此取出的1另一颗糖也是牛奶味的概率为Mo单选题24.某牌号的电视机使用到3万小时的概率为0.6,使用到5万小时的概率为0.24。一台电视机已使用到3万小时,则这台电视机能使用到5
19、万小时的概率为O。1B.2D.T正确答案:C参考解析:设事件A=这台电视机使用到3万小时”,B=这台电视机使用到5万小时”。则所求事件的概率为P(BlA)P(网.BuAnAB=B)尸=2P(八)P(八)0A5o单选题25.已知箱子里混杂地放着红色、白色和黄色手套各4副(手套大小一致,不区分左右手),从这些手套中至少要取()只才能保证取出颜色不同的两副手套。A.4B. 10C. 11D. 19正确答案:C参考解析:由题意可知,先选出一种颜色所有的手套,然后再取出剩下的两种颜色的手套各1只,最后再任意取1只即可保证取出颜色不同的两副手套。因此,至少要取4X2+1+1+1=11只。单选题26.某学校
20、开学对某年级进行分班,已知该年级新生共有100人,现在要分成3个班,每个班至少30人,问一共有多少种分班法?()A. 45B. 55C. 66D. 78正确答案:C参考解析:由题意可知,先给每个班级分29个新生,剩下10029X3=13个新生。把13个人分成3个班,保证每个班至少分一人,则共有品=66种分班法。单选题27.某大学一专业共有学生60人,现有A、B、C三门课程供学生选修。选修A课程的共有36人,选修B课程共有30人,选修C课程的共有24人,其中A、B两门都选修的有18人,B、C两门都选修的有6人,A、C两门都选修的有12人。问三门课程都选修的有多少人?()A. 6B. 12C. 1
21、8D. 246正确答案:A参考解析:由容斥原理可知:假设有A、B、C三类,则AUBUC=A+B+C-AB-B11C-AC+ABC0由题意可知,选修三门课程的人数为AGBGC=AUBUC+AB+BC+AC-(A+B+C)=60+18+6+12-(36+30+24)=6人。单选题28.育才小学安排体检,在上午要求一年级、二年级、三年级、四年级、五年级、六年级学生中有4个年级必须全体检完,所以医院开设了4个体检口同时进行,但是学校明确规定最低年级和最高年级不能在第一口和第四口,其他的没有要求,问学校体检安排的分法有多少种?()A. 144B. 120C. 96D. 72正确答案:A参考解析:由题意可
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 公务员 山西 行政职业能力 测验 第三 数量 关系 三节 组合 概率
链接地址:https://www.desk33.com/p-1124415.html