金属凝固原理作业.doc
《金属凝固原理作业.doc》由会员分享,可在线阅读,更多相关《金属凝固原理作业.doc(10页珍藏版)》请在课桌文档上搜索。
1、word定向凝固技术现状与开展某某:学号:班级:摘要:凝固技术的开展与存在的问题,介绍几种新开展起来的定向凝固技术。以定向凝某某理为根底,对几种定向凝固技术进展简要介绍,并指出今后定向凝固的开展方向。关键字:定向凝固;深过冷;凝固组织ABSTRACT: Thedevelopmentand problems in existence of the traditional directional solidification technology, introducing to several newly developed directional solidification technolog
2、y in the basis of directional solidification technology principle.KEY WORDS: directional solidification; deep overcool;solidification structure凝固是物质有液相转变为固相的过程,这是一种普遍的物理现象。可以说几乎一切金属制品在其生产流程中都要经历一次或屡次的凝固过程。但是由传统凝固技术生产的铸件一般均由无一定结晶方向的多晶体组成。在高温疲劳和蠕变过程中,垂直于主应力的横向晶界往往是裂纹产生和扩展的主要部位,也是涡轮叶片高温工作时的薄弱环节。由于定向凝固技
3、术可消除了横向晶界,获得生长方向与主应力方向一致的单向生长的柱状晶体,从而提高了材料抗高温蠕变和疲劳的能力。所以定向凝固技术一直被人们所重视,自1965年美国普拉特惠特尼航空公司采用高温合金定向凝固技术以来,这项技术已经在许多国家得到应用。采用定向凝固技术可以生产具有优良的抗热冲击性能较长的疲劳寿命较好的蠕变抗力和中温塑性的薄壁空心涡轮叶片。应用这种技术能使涡轮叶片的使用温度,提涡轮进口温度都有很大提高,从而提高发动机的推力和可靠性,并延长使用寿命。1 定向凝固技术的原理定向凝固又称单向结晶,是使金属或合金由熔体中定向生长结晶的一种工艺方法,用于制备单晶、柱状晶和自生复合材料。铸件定向凝固需要
4、两个条件:首先,热流向单一方向流动并垂直于生长中的固-液界面;其次,晶体生长前方的熔液中没有稳定的结晶核心。单向凝固技术的重要工艺参数就是凝固该过程中固液界面前沿液相中的温度梯度GL和固液界面向前推进速度,即晶体生长速率R。GL与R的比值是控制晶体长大形态的重要依据。在提高GL的前提下,增加R,才能获得所要求的晶体形态,细化组合,改善质量,并且提高单向凝固铸件的生产效率。单向凝固技术和装置的改善,其中最重要的的关键之一就是提高固液界面前沿的温度梯度GL。如图1 所示。图1定向凝固铸件的组织分为柱状、单晶和定向共晶3种。由于定向凝固技术能得到一些具有特殊组织取向和优异性能的材料,因而自它诞生以来
5、得到了迅速开展。定向凝固技术被广泛用于获得具有特殊取向的组织和优异性能的材料,应用定向凝固方法可以得到定向组织甚至单晶$明显地提高材料所需的性能,定向凝固过程中温度梯度和凝固速率这两个凝固参数能够独立变化成为凝固理论研究的重要手段。单晶制备技术上,科技大学开发出一种介于HGC与OCC法之间的连续定向凝固装置,成功地进展了Al-Si、Al-Cu合金的连续定向凝固2 定向凝固的开展定向凝固,也就是指在凝固过程中采用强制手段,在凝固金属样未凝固熔体中建立起沿特定方向的温度梯度,从而使熔体在气壁上形核后沿着与热流相反的方向,按要求的结晶取向进展凝固的技术。这种技术最初是在高温合金的研制中建立并完善起来
6、的。采用、开展定向凝固技术最初用来消除结晶过程中生成的横向晶界,从而提高材料的单向力学性能。还运用于燃汽涡轮发动机叶片的生产,所获得的具有柱状乃至单晶组织的材料具有优良的抗热冲击性能、较长的疲劳寿命、较高的蠕变抗力和中温塑性,因而提高了叶片的使用寿命和使用温度。各种热流能被与时导出是定向凝固过程得以实现的关键,也是凝固过程成败的关键,获得并保持单向热流是定向凝固成功的重要保证。传统的定向凝固技术主要有发热剂法、功率降低法、快速凝固法和液态金属冷却法等。传统定向凝固技术的主要缺点是冷却速度慢。这样就使凝固组织有充分的时间长大、粗化,以致产生严重的枝晶偏析,限制了材料性能的提高。造成冷却速度慢的主
7、要原因是凝固界面与液相中最高温度面距离太远,固液界面并不处于最优位置。因此所获得的温度梯度不大,这样为保证界面前液相中没有稳定的结晶核心的形成,所允许的最大凝固速度就有限。定向凝固技术除用于高温合金的研制外,还逐渐推广到半导体材料、磁性材料、复合材料等的研制中,并成为凝固理论研究的重要手段之一。热流的控制是定向凝固技术中的重要环节,获得并保持单向热流是定向凝固成功的重要保证。为进一步提高定向凝固过程中的温度梯度,从而提高凝固速度,最终提高材料的性能,在充分吸收其他凝固技术如快速凝固优点的根底上,出现了许多新型的定向凝固技术。定向凝固技术也经历了由炉外法、功率降低法、快速凝固法直到液态金属冷却法
8、等的开展过程。2.1 发热剂法EP法所谓的发热剂法就是将熔化好的金属液浇入一侧壁绝热,底部冷却,顶部覆盖发热 剂的铸型中,在金属液和已凝固金属中建立起一个自上而下的温度梯度,使铸件自下而上进展凝固,实现单向凝固。这种方法由于所能获得的温度梯度不大,并且很难控制,致使凝固组织粗大,铸件性能差,因此,该法不适于大型、优质铸件的生产。但其工艺简单、本钱低,可用于制造小批量零件。2.2 功率降低法PD法将保温炉的加热器分成几组,保温炉是分段加热的。当熔融的金属液置于保温炉内后,在从底部对铸件冷却的同时,自下而上顺序关闭加热器,金属如此自下而上逐渐凝固,从而在铸件中实现定向凝固。通过选择适宜的加热器件,
9、可以获得较大的冷却速度,但是在凝固过程中温度梯度是逐渐减小的,致使所能允许获得的柱状晶区较短,且组织也不够理想。加之设备相对复杂,且能耗大,限制了该方法的应用。2.3 高速凝固法HRS法为了改善功率降低法在加热器关闭后,冷却速度慢的缺点,在Bridgman晶体生长技术的根底上开展成了一种新的定向凝固技术,即快速凝固法。该方法的特点是铸件以一定的速度从炉中移出或炉子移离铸件,采用空冷的方式,而且炉子保持加热状态。这种方法由于防止了炉膛的影响,且利用空气冷却,因而获得了较高的温度梯度和冷却速度,所获得的柱状晶间距较长,组织细密挺直,且较均匀,使铸件的性能得以提高,在生产中有一定的应用。2.4 液态
10、金属冷却法LMC法HRS法是由辐射换热来冷却的,所能获得的温度梯度和冷却速度都很有限。为了获得更高的温度梯度和生长速度。在HRS法的根底上,将抽拉出的铸件局部浸入具有高导热系数的高沸点、低熔点、热容量大的液态金属中,形成了一种新的定向凝固技术,即LMC法。这种方法提高了铸件的冷却速度和固液界面的温度梯度,而且在较大的生长速度X围内可使界面前沿的温度梯度保持稳定,结晶在相对稳态下进展,能得到比拟长的单向柱晶。常用的液态金属有GaIn合金和GaInSn合金,以与Sn液,前二者熔点低,但价格昂贵,因此只适于在实验室条件下使用。 Sn液熔点稍高(232),但由于价格相比照拟廉价,冷却效果也比拟好,因而
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 金属 凝固 原理 作业
![提示](https://www.desk33.com/images/bang_tan.gif)
链接地址:https://www.desk33.com/p-11368.html