基于PID的温度控制与测量系统设计设计.docx
《基于PID的温度控制与测量系统设计设计.docx》由会员分享,可在线阅读,更多相关《基于PID的温度控制与测量系统设计设计.docx(35页珍藏版)》请在课桌文档上搜索。
1、基于PlD的温度控制与测量系统设计设计编号春理”女.本科生毕业设计基于PID的温度控制与测量系统设计二。一二年六月毕业设计原创承诺书1 .本人承诺:所呈交的毕业设计温度控制与测量系统,是认真学习理解学校的长春理工大学本科毕业设计工作条例后,在教师的指导下,保质保量独立地完成了任务书中规定的内容,不弄虚作假,不抄袭别人的工作内容。2 .本人在毕业设计中引用他人的观点和研究成果,均在文中加以注释或以参考文献形式列出,对本文的研究工作做出重要贡献的个人和集体均已在文中注明。3 .在毕业设计中对侵犯任何方面知识产权的行为,由本人承担相应的法律责任。4 .本人完全了解学校关于保存、使用毕业设计的规定,即
2、:按照学校要求提交论文和相关材料的印刷本和电子版本;同意学校保留毕业设计的复印件和电子版本,允许被查阅和借阅;学校可以采用影印、缩印或其他复制手段保存毕业设计,可以公布其中的全部或部分内容。以上承诺的法律结果将完全由本人承担!作者签名:摘要本论文分析了PID控制和模糊控制的优缺点,考虑将它们结合起来,实现优势互补,采用模糊规则在线整定PID的A人三个参数的模糊自适应PID控制方案。本论文设计了一种基于模糊自整定PID算法的控制器,详细地介绍了系统的设计和实现方法。下位机以AT89S52单片机为微处理器,K型热电偶为传感器,由MAX6675热电偶信号数字转换芯片进行模数转换,单片机根据输入的各种
3、命令,进行智能算法得到控制量,通过零触发光电耦合器件MOC3061和晶闸管BT136驱动执行单元。通过串口通信将下位机采集的数据送至上位机。关键词:温度测控PID控制单片机AbstractInthispapertheadvantagesanddisadvantagesofPIDcontrolandfuzzycontrolisanalyzedandthemethodofcombiningthemtogetherispresented.Thefuzzyself-tuningPIDcontrolmethod,whichinvolvesfuzzycontrolrules,isemployedtoach
4、ievereal-timeadjustmentstothethreeparametersPkDkandkofthePID.Thesimulationresultsshowthatthecontrollerbasedonfuzzyself-tuningPIDcontrolalgorithmisthebestone,becausetheregulatingtimeisshort,theovershootandthesteady-errorisverylittle.Itcanmeetthecontroldemandsandit,santi-interferenceabilityisverystron
5、g.Thedesigningmethodandrealizationofthesystemarediscussedindetail.TheMCUisthesingle-chipmicroprocessorAT89S52,K-typethermocoupleisusedastemperaturesensor,andMAX6675isusedasA/Dconverter.Whengettingtheinputorders,MCUworksoutthecontrolvalueandgivespulsesignaltodrivetheperformanceunitwhichiscomposedofph
6、otoelectricalcouplerMOC3061andTRIACSBT136.Hostcomputercollectsthedatathroughserialcommunicationandusesamodulardesignapproach.Keywords:TemperatureMeasurementandControl;PIDControl;MCU目录摘要AbstractII第一章绪论11.1 课题的研究背景及意义11.2 课题的国内外研究现状21.3 课题研究的主要内容3第二章被控对象及控制策略42.1 系统模型的建立42.2 控制策略研究62.3 仿真分析82.4 本章小结9第
7、三章温度测控系统的硬件设计103.1 温度测控系统的硬件组成103.3 温度检测电路的设计113.4 AT89S52单片机及其最小系统143.5 人机交互接口电路设计163.5.1 键盘电路163.5.2 显示电路173.5.3 报警电路的设计183.6 温度控制电路的设计183.7 串口通信电路203.8 硬件抗干扰设计213.9 本章小结22第四章温度测控系统的软件设计及实验结果224.1 系统下位机软件设计224.1.1 软件设计概述224.1.2 主控模块224.1.3 数据采集子模块234.1.4 控制算法子模块244.2 实验数据分析254.3 本章小结25结束语26致谢27参考文
8、献28第一章绪论1.1 课题的研究背景及意义物体的许多物理现象和化学性质都与温度有关,温度是工农业生产、科学实验研究以及日常生活中需要普遍进行测量和控制的一个非常重要的物理量,如:在冶金、机械、石油化工、电力等工业生产中的温度控制;在温室花房、蔬果大棚、粮仓等农业生产中的温度测控;与我们生活息息相关的微波炉、电热水器、电烤箱、空调等家用电器的温度控制;高等院校实验室微机测控系统中将温度作为被测参数,供学生做综合实验、实训或课程设计等。温度控制对于小到人民的日常生活、大到钢铁等大型工业生产工程都具有广阔的应用前景。准确地测量和有效地控制温度是优质、高产、低耗和安全生产的重要条件,所以对温度进行控
9、制是非常必要且有意义的。目前,温度测控系统一般使用的还是传统仪器,以单台仪器独立工作、手工操作、人工记录和分析判断信息为主要设计思想,其功能和规格一般被厂家所固定,使用时需要通过硬件或者固化的软件来实现,用户无法随意改变其结构和功能,不具有通用性。而当前的发展对测控仪器提出了越来越高的要求,不仅要求能完成实时在线监测,还希望具有更强的通用性,能适应多种多样的使用要求,随时可改变检测对象、完成不同测试任务或升级换代,能建立起一个可掌握生产过程的信息资料,并能以监测、分析、控制和优化等手段为及时的人工决策和控制提供依据的测控系统。显然,传统仪器已经不能适应现代检测系统的要求。一些智能仪器构成的温度
10、监测系统,也往往需要人干预,费时费力,而利用高级编程语言进行软件开发又让人感到力不从心。总体而言,测控领域主要面临了以下几大问题:产品更新换代的速度太快,彼此之间的兼容性较差;(2)难以满足用户不同层次和不断变化的要求;(3)对测控系统集成入网、并能通过网络访问和交互的需求日益迫切。智能温度控制器正朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟温度控制器和网络温度控制器、研制单片测温控温系统等高科技的方向迅速发展。上述差距,是我们必须努力克服的。随着科学技术的进步和计算机技术的飞速发展,虚拟仪器开启了测控仪器的新纪元。虚拟仪器为人们建立检测系统、自动测量系统、过程监控系统等提供了一
11、个理想的软件开发环境。它含有种类丰富的函数库,科学家和工程师们利用它可以方便灵活地搭建功能强大的测控系统。同时,现代控制理论的发展,人工智能技术的深入研究,也为控制系统的理论领域增加了新的内容。常用的温度控制电路除了传统的PID控制方法,近几年来快速发展的是将模糊控制、神经网络、遗传算法等智能控制方法应用于温控系统,包括智能控制与PID控制相结合及这些智能控制之间的结合。利用现代控制理论与虚拟仪器技术,将智能控制与传统控制有机综合应用,提高测量精度,设计出适用于不同加热条件和要求的智能型温度测控系统是当今测温研究的一个重点。本文的研究对象一电烤箱,是一种非线性、时变性、大时滞的被控对象,用精确
12、的数学模型表示其特性是十分困难的,用常规的PID控制难以达到较高的控制精度,只有在参数整定准确且系统不发生剧烈变化的情况下才能实现,然而这对一般的电烤箱温度控制系统来说都难以满足,在关于温度控制的绝大部分文献资料中,控制结果都有较大的超调,本论文基于这一特点进行研究,提出一种控制方案,把虚拟仪器与智能温度控制相结合,开发一套基于模糊自整定PID参数算法的控制系统,使其具有结构简单、响应速度快、控制精度高、鲁棒性强的特点。另一方面基于控制实验室建设的要求,目前在国内高校,虚拟仪器正逐步走进理工科课堂和实验室,用虚拟仪器技术来实现智能温度测控实验系统,将其用于实验室电烤箱的温度控制,使其达到相应的
13、技术要求,来满足自动控制技术、单片机、虚拟仪器技术、传感器与枪测技术等多门课程的教学与实验,并能用作学生综合实训或课程设计,系统的使用和维护费用低。1.2 课题的国内外研究现状1967年Leondes等人在他们的技术汇报中首次正式使用“智能控制”一词。1974年,Mamdani首次将模糊逻辑和模糊推理用于锅炉和蒸汽机的控制,标志着人们用模糊逻辑进行工业控制的开始。1976年,P.J.King和Mamdani等人合作,采用模糊模型的预估方案,用模糊控制对反应相进行温度控制,成功解决了系统不稳定的问题,这也是控制史上首次利用模糊控制来进行温度控制。20世纪90年代,美国、英国相继发表智能控制专辑,
14、德国、日本等国家也连续发表多篇智能温度控制在各个领域的应用方面的论文。现今Simens和IiIfOrm公司联合研制了性能优良的模糊控制开发软件工具及第三代模糊微处理器,可利用软件或硬件的方法实现对系统的模糊控制。早在1965年我国著名科学家傅京孙首先提出把人工智能启发式推理规则引入学习控制系统,并于1971年提出人工智能和自动控制交叉学科,奠定了国内智能控制发展的基础。随后越来越多的学者开始关注智能控制技术,国家也越来越重视智能控制理论的研究和应用,1993-1995连续三年国内都召开了与智能控制有关的学术会议。由于温度控制涉及到工业、农业和日常生活等众多领域,智能温度控制技术成为国内学者研究
15、的重要内容,在科技刊物上发表的与智能温度控制有关的论文也相继增多。总体而言,智能控制在温度控制系统中得到了广泛的应用。目前,国外已研制出智能化、精度高、小型化的智能温度控制器,开发出成熟的智能控制算法和控制软件。相比较而言,国内智能控制技术与日本、美国、瑞典、德国等先进国家相比,仍存在较大差距。目前国内成熟的温控产品主要以“点位”控制及常规的PID控制为主,商品化的智能控制系统少,在智能控制技术研究方面投入的人力、物力还不够。1.3 课题研究的主要内容本课题以电烤箱为研究对象,针对电烤箱升温单向性、大惯性、大滞后的特点,在比较常规PID控制、模糊控制及参数模糊自整定PID控制策略的基础上,主要
16、对参数模糊自整定PID控制的应用进行了研究,并结合虚拟仪器巨大的优越性,设计出响应速度快、超调量小、稳态误差小的温度测控系统。本课题的具体研究内容如下:第一章:论述智能温度测控系统课题的背景和意义,温度测控系统控制方案,课题的国内外研究现状及本论文的主要内容。第二章:系统模型的建立及控制策略的选择与设计,利用Matlab对PlD控制、模糊自整定PID控制进行仿真比较。第三章:智能温度测控系统硬件电路的设计。根据系统设计原则,给出整体设计方案,详细介绍以单片机为核心的温控系统各部分器件的功能与原理,给出电路原理图,并对硬件采取各种抗干扰措施。第四章:智能温度测控系统的软件设计,给出了各主控模块的
17、子程序流程图,对整个系统进行了调试和实验,对实验结果进行了分析。第二章被控对象及控制策略2.1 系统模型的建立控制系统建模方法分为两大类:机理建模和实验建模。机理建模理论上可以很精确,但实际上受客观条件的限制很难做到,对于复杂的系统必须事先做许多简化和理想化才能建立模型。这种方法存在数学方程不易准确建立、实验工艺较复杂、运行工况变化较大等缺点,最终会造成对象模型的不准确。实验建模把被研究的对象看作一个黑箱,通过输入信号,研究对象的输出响应信号与输入激励信号之间的关系,估计出系统的数学模型,这种方法简单实用,尤其对一些不易了解内部结构和机理不明的“黑箱”系统更是如此。考虑到电烤箱结构复杂,许多变
18、量间只存在相关关系,而这种关系往往不能直接用数学式来精确描述,所以本文选择实验建模来获取系统模型。电烤箱是一个具有热容量的对象,当系统上电以后,箱内的温度是一个随时间逐渐上升的过程。加热丝的温度逐渐升高,通过箱壁热传递和热辐射使箱体内温度也逐渐升高,温箱有一定的容量滞后,其余环节可视为比例环节,因而一般可用一阶惯性环节加一个滞后环节来描述温控对象的数学模型,其传递函数表示为:G(三)=募YeS(2-1)式中K是对象的静态增益;T是对象的时间常数;T是对象的纯滞后时间。电烤箱模型参数的辨识常用的方法是阶跃响应法。电烤箱在不同功率下的阶跃响应曲线基本相同,所以可由某一功率下的系统阶跃响应曲线来取得
19、系统的近似特征参数。在获得对象的飞升曲线后可用Cohn-Coon公式求对象参数。一阶惯性纯滞后对象飞升曲线如图2-1所示。图2-1一阶惯性纯滞后对象飞升曲线Cohn-Coon公式如下:“outK=in(2-2)T=1.5(t0632-,0.28)(2-3)L5(t,28_%632)(2-4)式中心和%.632分别是飞升曲线为028y和0632y时对应的时间。本文的被控对象是深圳市伟科达电热设备有限公司生产的型号为WKD-298的电烤箱,工作频率50Hz,温度范围0-250度,总功率2000Wo在实验过程中对其给定输入180度,每30S采样一次,得到实验数据如表2.1所示:表2-1实验测得的电烤
20、箱温度数据时间/S0306090120150180210240270300温度/C20303750637594106120131141时间/s330360390420450480510540570600温度/C152161168171175177178179180180将表2-1中的数据输入MATLAB进行仿真得到图2-2。图2-2系统阶跃响应响应曲线根据Cohn-Coon公式可得到系统模型的各参数:k=0.95,T=178s,=30so因此本文被控对象的传递函数为:(2-5)G(s)=0,95e30A178S12.2 控制策略研究1、PID控制的基本理论PID控制在生产过程中是一种被普遍采用
21、的控制方法,是一种建立在经典控制理论基础上的控制策略,对于线性定常系统的控制是非常有效的,其调节品质取决于PID控制器的各个参数的确定。常规PID控制系统原理框图如图2-3所示。图2-3常规PID控制系统原理图理想的PID控制器根据给定值r与实际输出值c构成的控制偏差e(t)e(t)=r(t)-c(t)(2-6)将控制偏差的比例、积分和微分通过线性组合构成控制量,对被控对象进行控其连续形式为:u(r)=Kf,M+亍工e(f)df+亲(2.7)其中,e为系统误差,K/,7;TL分别为比例系数、积分时间和微分时间。在图2-3的基础上简单分析一下PID控制器各校正环节的作用:比例环节的引入是为了及时
22、成比例地反映控制系统的偏差信号e(t),以最快速度产生控制作用,使偏差向减小的方向变化。控制作用的强弱取决于比例系数K”随着KF的增大,稳态误差逐渐减小,但同时动态性能变差,超调量也增大,容易产生振荡,甚至会使闭环系统不稳定。因此K,选择必须适当,才能取得过渡时间少、稳态误差小而又稳定的效果。(2)积分环节的引入主要用于消除静差,即当闭环系统处于稳定状态时,此时控制输出量和控制偏差量都将保持在某一个常值上。积分作用的强弱取决于积分时间常数越大积分作用越弱,有利于系统减小超调,过渡过程不易产生振荡,但消除静差所需的时间较长。反之随着7;减小,静差也减小,但过小的7;会加剧系统振荡,甚至使系统失去
23、稳定。(3)微分环节的引入是为了改善系统的稳定性和动态响应速度,微分控制能感应出偏差的变化趋势,增大微分控制作用可加快系统响应,减小超调量,克服振荡,提高系统的稳定性,但使系统抑制干扰的能力降低。微分部分的作用强弱由微分时间七决定。TL越大,则它抑制e变化的作用越强,心越小,它抗e(t)变化的作用越弱。它对系统的稳定性有很大的影响。在以微处理器为硬件核心的控制系统中,由于是以采样周期对输入和输出状态进行实时采样,故它是离散时间控制系统。在离散控制系统中,PID控制采用差分方程表示:U(Q=KPI/i=o/(2-8)令Ae(Q=e(Z)-e(D,K.=Kp9Kd=KP与即有kU(Z)=KFe(Q
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 PID 温度 控制 测量 系统 设计

链接地址:https://www.desk33.com/p-1150425.html