泛函历年试题集锦.docx
《泛函历年试题集锦.docx》由会员分享,可在线阅读,更多相关《泛函历年试题集锦.docx(6页珍藏版)》请在课桌文档上搜索。
1、泛函分析2003试题1、表达赋范空间完备性的定义;证明:在BanaCh空间中,绝对收敛级数必收敛。解:(P5定义)假设赋范空间X中的序列x,J满足如下Cauchy条件:那么称E为Cauchy列,假设X中所有Cauchy列均收敛,那么称X为完备赋范空间或Banach空间。证明:BanaCh空间是完备的赋范空间,令X为BanaCh空间,*uX,J收敛,即2%绝对收敛。那么,令因为Ellzll收敛,故余项fjlM0,即A=rt+1这说明S,J是X中的CaUChy列,因X完备,故S,J收敛,即Zz收敛。2、设(X)=MI-x),分别求作为空间乃0,1,QO与CjlO的元素的范数。(即求u乃qo,i和N
2、C1IOJj时的范数IiU)解:uLL0,1时,11Il=J(J”(X)Kr=(X(I-项Zx=1/6UC0,l时,HuH=maxu0=maxsupIX(I-X)I=I/40xluCj0,l时,HuH=max(u0,u,0)=max(supX(I-X)LSUPl-2x)=1O1O13、设X、Y是赋范空间,丁L(X,Y)J(X)=|7Il*X)。说明f(x)连续,并求supf(x)(r0)oIWIr解:/3)为数值函数,要证/(幻连续,7xJ-7-,其中乙x0而由公式M-帆卜-W(P3公式),即一网g-倒愀帆T0(T有界,连续,“oo)故/。)连续。11/21/24、给定无穷矩阵A=,求IIAI
3、ll,HAlL并估计IIAII2。1/31/3kF解:由命题(P76命题2.22),5、设心,说明/!?(),1:并求|/|。解:变量代换,令X=J亍,那么:1-19令U(X)=-X4,那么显然WX)z?()/,2故由(P89定理),L20,ir,且:6、设X为BanaCh空间,x(f):,勿X连续,夕:。,4向是Cl函数,(a)=c,(3)=b,证明:证明:等式两边都是有意义的向量,由(PlOl推论),令fw,那么命题得证。泛函分析2006试题1、(1)设lpoo,写出在空间0中,序列“范数收敛于的定义。,Jr,0xl,(2)设%(r)=0E=1,2,3,一.对的哪些值,序列“在空间Zao,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 历年试题 集锦

链接地址:https://www.desk33.com/p-1161766.html