水资源基础调查实施方案(2024).docx
《水资源基础调查实施方案(2024).docx》由会员分享,可在线阅读,更多相关《水资源基础调查实施方案(2024).docx(34页珍藏版)》请在课桌文档上搜索。
1、水资源基础调查实施方案2024年3月一、主要目标二、主要任务2I3(一)水域空间调查4(.)地表液态水储存量调查7(三)冰川及常年积雪调查11(四)地下水资源调查16(五)水资源专题调查评价22(六)数据库建设25(七)相关资料收集与共享26I,Ll、予页28五、保障措施29(一)组织保障29(二)技术保障30(四)安全保障31按照自然资源部关于开展水资源基础调查工作的通知(自然资发(2023)230号)要求,为保障水资源基础调查工作科学有序实施,制定本方案。一、主要目标水资源基础调查以国土“三调”和年度国土变更调查成果为统一底版,以我国陆域国土空间范围内的所有水体(液态水和固态水、淡水和咸水
2、、地表水和地下水)为调查对象,紧紧围绕自然资源“两统一”职责,充分发挥各级自然资源系统的优势,构建高效、顺畅的中央地方联动和部门合作共享工作机制,从自然资源的角度开展调查,掌握全国水资源空间分布、数量、质量和动态变化等状况,为自然资源管理、生态文明建设、国民经济和社会发展提供水资源基础信息。二、主要任务水资源基础调查立足自然资源系统履行“两统一”职责,突出调查数据成果的基础性和空间性,填补以往水资源调查工作空白,形成具有自然资源特色的水资源基础调查成果。主要任务包括:(一)水域空间调查。以国土“三调”和年度国土变更调查的水域范围为基础,调查全国江河、湖泊、水库等水域丰水期和枯水期的水面范围、面
3、积等情况,坑塘的范围、面积等情况,以及夏季冰川及常年积雪的范围、面积等情况。(二)水储存量调查。包括地表液态水储存量、地表固态水储存量和地下水储存量。开展水下地形(水深)测量;调查全国江河、湖泊、水库、坑塘水储存量,夏季冰川及常年积雪储存量,以及全国地下水储存量。(三)水资源量调查。从水利部门共享地表水资源相关数据,获取各省(区、市)、各流域地表水资源量。开展全国地下水资源周期和年度调查评价,掌握各省(区、市)、各流域的地下水资源量。(四)水资源质量调查。调查获取全国地下水、重点地区地表固态水等水资源的质量。地表水资源质量共享生态环境部门数据成果。(五)年度变化调查。对水资源主要指标开展年度变
4、化调查评价,包括湖泊、水库等水体储存年度变化量,地下水储存年度变化量,冰川及常年积雪年度面积变化和消融量,河湖库塘水面面积年度变化等,掌握水资源年度变化情况并形成年度成果。(六)水资源专题调查评价。面向重点区域,针对自然资源管理需求,围绕水资源与其它自然资源的相互关系,开展专题调查评价工作。三、工作内容根据工作目标任务要求,按调查对象和工作方式不同,部署实施水域空间调查、地表液态水储存量调查、冰川及常年积雪调查、地下水资源调查、水资源专题调查评价和数据库建设等工作。(一)水域空间调查1.调查内容与主要指标水域空间调查主要是调查特定时间点水体的空间位置、范围与面积情况。以国土“三调”和年度国土变
5、更调查的水域范围为基础,调查丰枯水期全国江河、湖泊、水库等水面范围。针对重要生态脆弱区和受极端气候事件影响区域,根据需要开展水域空间动态调查监测。坑塘水域空间调查数据采用2024年度国土变更调查成果中的坑塘水面数据。2.主要方法(1)遥感数据采集以优于2米的国产光学卫星影像为主,优于5米的SAR卫星影像为辅,优于50米的国产光学卫星影像为高频次调查监测的补充数据源。全国范围按照丰枯水期采集遥感影像数据,其中,丰水期遥感影像南方地区原则上集中在6-7月,北方地区原则上集中在7-8月;枯水期遥感影像原则上集中在11-12月;部分特殊地区可根据当地丰枯期特征采集相应月份的遥感影像数据。重要生态脆弱区
6、和受极端气候事件影响的重点地区,根据实际需求,增加遥感影像数据采集频次,按月度或季度采集卫星影像数据。(2)正射影像图制作以国土“三调”初始正射影像及其他高精度纠正控制资料、高程数据等控制资料为基础,以县级行政辖区为单位,对采集的遥感数据进行处理,制作覆盖全国的正射影像图。(3)水域空间信息提取充分利用多源遥感影像,采用自动和人工相结合的方式,在正射影像图上分别提取江河、湖泊、水库等现状水面覆盖范围信息,形成调查底图。(4)调查底图分发国家按照“完成一批、检查一批、分发一批”的原则,采用线下专人领取或机要邮寄方式及时将水域空间调查底图分发各地和有关单位。(5)调查与上报地方自然资源主管部门在国
7、家提取的水域空间数据基础上,组织队伍以内业调查为主体开展复核,确定水面范围和边界。省级自然资源主管部门形成本辖区水域空间调查成果并上报国家。3 .任务分工国家负责组织遥感影像采集、数据处理、水域空间信息提取、数据汇总,形成全国水域空间成果和数据库。根据需要组织开展重点地区水域空间月度和季度变化调查。省级自然资源主管部门负责组织开展本辖区水域空间调查,在国家提供的调查底图基础上进行复核,形成省级水域空间成果和数据库。此外,省级自然资源主管部门也可根据本地工作基础和工作需要,拓展水域空间调查工作内容,包括但不限于历史长时序水面变化调查、重点水域高频次动态变化调查等。4 .进度安排(1) 2024年
8、3月,国家启动重点地区月度或季度卫星影像采集、处理及水域空间信息内业提取工作。6-9月,国家开展2024年度全国丰水期卫星影像采集,开展丰水期水域空间信息内业提取、调查底图制作,完成全国调查底图分发工作。6T1月,省级自然资源主管部门根据国家下发的调查底图,组织开展本辖区2024年度丰水期水域空间调查复核工作,完成本辖区丰水期水域空间调查成果上报国家。11-12月,国家开展2024年度全国枯水期卫星影像采集、处理。12月底前,形成全国丰水期和重点地区水域空间数据库,完成年内重点地区水域空间卫星遥感动态监测。(2) 2025年1T2月,国家继续开展重点地区月度或季度卫星影像采集及水域空间信息内业
9、提取工作。2月底前,国家完成2024年度全国枯水期水域空间信息内业提取、调查底图制作,完成全国调查底图分发工作。4月底前,省级自然资源主管部门根据国家下发的调查底图,组织开展本辖区2024年度枯水期水域空间调查复核工作,完成本辖区枯水期水域空间调查成果上报国家。5T2月,国家根据需要开展水域空间年度变化调查。12月,形成全国水域空间调查成果和数据库。(二)地表液态水储存量调查开展地表液态水水下地形(水深)测量,建立“水面面积-水深-水储存量”数学模型,根据水域空间调查成果,计算湖泊、水库、坑塘、河流水储存量。1.调查内容与主要指标表1地表液态水储存量调查主要内容、来源及要求查象调对调查内容、来
10、源要求面积水深湖泊来源于丰水期和枯水期水域空间调查成果水下地形(水深)测量对于50平方千米以上的湖泊,可以根据湖泊特点,原则上均匀部署不少于13条测深线获取水深数据(主测深线需保留),具体按照部制定的水下地形测量技术文件执行。水库来源于丰水期和枯水期水域空间调查成果收集共享为主对需要开展实地调查的水库,要求同上。坑塘来源于年度国士变更调查成果水深抽样测量、资料收集等根据区域特点、坑塘类型,基于抽样理论确定抽样强度,一般总体抽样比例控制在l%-5%o河流来源于丰水期和枯水期水域空间调查成果典型断面水下地形(水深)测量断面测量线可以考虑按1000-2000米间距布设。(1)湖泊水储存量调查对于面积
11、大于1平方千米的湖泊应重点调查,通过资料收集和实地调查等方式开展湖泊水储存量调查。a)对于已开展过水下地形和水储存量调查的湖泊,如果实测以来湖泊淤积不严重,可通过资料收集,获取湖泊名称、位置、面积、水下地形、储存量等数据成果。b)对于需要实测的湖泊,开展水下地形(水深)测量,构建湖泊“水面面积-水深-水储存量”数学模型,结合水域空间调查成果计算湖泊水储存量。C)位于高寒、高海拔等区域因自然条件恶劣等原因确实无法开展外业调查的湖泊,可结合区域已开展的同类型湖泊调查数据,构建数学模型类推计算湖泊水储存量。对于面积小于1平方千米的湖泊,可通过资料收集获取湖泊水储存量等数据;缺乏数据资料的,根据本地区
12、实际,按照大于1平方千米湖泊调查方法开展湖泊实测,也可以参照坑塘调查方式开展抽样调查,抽样比例不小于10%,掌握1平方千米以下湖泊水储存量。(2)水库水储存量调查对于大中型水库应重点调查,主要通过资料收集掌握水库水下地形和水储存量数据成果。对于具有水下地形和水储存量数据资料的水库,如果实测以来水库淤积不严重,可通过资料收集,获取水库的名称、位置、面积、库容、调蓄水位、库容曲线和储存量等数据成果。不满足以上条件的水库需要开展水储存量实地调查,按照湖泊水储存量调查方法构建“水面面积-水深-水储存量”数学模型,结合水域空间调查成果计算水库水储存量。对于收集资料无法满足工作精度要求的小型水库,采用面积
13、小于1平方千米的湖泊水储存量调查方法开展调查。(3)坑塘水储存量调查根据2023年度国土变更调查成果中的坑塘水面图斑,部署抽样样本,开展坑塘水深抽样调查。以数理统计为理论基础,根据区域特点、坑塘类型,按照坑塘总数的l%-5%开展坑塘抽样调查,构建不同片区坑塘“水面面积水深-水储存量”统计模型,利用2024年度国土变更调查成果分析计算坑塘水储存量。可采用实测或资料收集等方式获取坑塘水深。开展坑塘水深实测时,根据坑塘特点合理布设测点,可按照“十”字或“井”字型布设,采用测杆、测锤或声呐装备等进行测量,单个坑塘原则上测深点数3-5个。(4)河流水储存量调查省级自然资源主管部门根据本地工作需要和计划安
14、排,确定2024-2025年期间需要开展调查的河流或河段,可参照以下要求开展河流(河段)水储存量调查。a)根据控制断面水下地形(水深)测量数据,构建河流(河段)水储存量计算数学模型,并结合水域空间调查成果计算河流(河段)水储存量;b)河流断面测量可以考虑按1000-2000米间距布设测线,平直等宽河段可根据条件放宽,地形明显变化河段需适当加密。2 .主要方法综合利用声呐、激光、测杆、测锤、遥感反演等多种方式,选取合适的采样间隔,获取水下地形(水深)数据,构建“水面面积-水深-水储存量”数学模型,结合水域空间调查成果得出湖泊、河流、水库、坑塘等地表液态水储存量。对于50平方千米以上的湖泊、水库,
15、可以根据湖泊、水库特点,原则上均匀部署不少于13条测深线获取水深数据(主测深线需保留),具体按照部制定的水下地形测量技术文件执行。3 .任务分工湖泊:根据湖泊分布和类型情况,国家承担重点和典型湖泊以及主要界湖的调查任务(名单另行下发);省级自然资源主管部门负责国家调查任务之外的本辖区其他湖泊的水储存量调查任务,并负责辖区内属于国家调查任务范围的湖泊水上作业手续办理等协助配合工作。水库:省级自然资源主管部门负责组织开展本辖区水库资料搜集和补充调查,形成本辖区水库水储存量调查成果。坑塘:省级自然资源主管部门负责组织开展本辖区坑塘水深抽样调查,形成本辖区坑塘水储存量调查成果。河流:省级自然资源主管部
16、门根据本辖区工作实际可选择河流(河段)开展水储量调查。国家结合地方工作情况选取部分重点河流(河段)开展调查。4 .进度安排2024年7月底前,完成资料收集,启动实地调查工作。2025年10月底前,完成湖泊、水库、河流、坑塘水体实地调查,构建“水面面积-水深-水储存量”数学模型。2025年12月底,全面完成地表液态水储存量调查工作。2026年,根据需要开展地表液态水储存量年度变化调查。(三)冰川及常年积雪调查以2023-2024年遥感影像数据为主,辅以其他年份遥感影像数据,充分利用遥感、航空物探、地面调查等手段,调查全国面积大于600平方米的冰川及常年积雪(即“冰川。同时,选取典型冰川,持续开展
17、综合调查监测与研究。1.调查内容与主要指标调查内容与主要指标包括冰川分布与面积、冰川厚度与储存量、冰川面积变化、冰川水质量等。5 .主要方法(1)资料收集与遥感数据采集收集整理现有冰川编目数据集、冰川高程数据以及地方近期完成的冰川调查成果。其中,冰川高程数据包括历史DEM数据和空间分辨率优于10米的最新DEM数据。采集2023-2024年度冰川分布区7月、8月和9月光学影像,每个月份选取当月最低云量影像(冰川区最大云量不超过30%),形成空间分辨率优于10米(优于2米分辨率影像优先)光学影像月度时间序列底图。对于光学影像数据无法满足要求的,可通过采集空间分辨率不低于5米的SAR卫星影像弥补或采
18、用其他年份同期光学和SAR卫星影像。(2)冰川分布与面积调查开展以往冰川调查成果综合集成。根据遥感影像,结合综合集成成果,采用自动提取辅助与人工目视解译相结合方式获取冰川分布与面积,并采集冰川海拔、类型、所属行政区等属性信息。(3)冰川厚度与储存量调查充分收集地方、科研院所等单位的冰川厚度和储存量调查数据;以探地雷达为主要技术手段开展典型冰川厚度实地调查,以航空物探为主要技术手段开展典型区域冰川厚度实地调查,获取不同区域冰川厚度实测数据;在冰储存量经验模型及冰厚模型等基础上,基于区域实测冰川面积、厚度等数据优化模型参数;利用区域遥感解译的每条冰川面积,按模型计算每条冰川储存量;综合实测数据和模
19、型数据形成区域冰川储存量。(4)冰川水质量调查在开展典型冰川厚度实地调查过程中,同步采集冰川冰块或冰川融水,每条实测冰川采集的水样不少于1个,对冰川水化学组分进行测试分析。(5)冰川专题调查研究综合运用卫星遥感、航空物探、探地雷达、钻探、花杆、自动气象水文观测、模拟计算等手段,开展典型冰川综合调查监测与研究,监测冰川表面运动与变化,探索研究典型冰川厚度计算模型;探索研究基于多期DEM数据、典型冰川模型等计算区域冰川厚度和冰川消融量的技术方法,综合冰川实测和模型计算数据形成典型冰川面积、厚度及变化,以及冰川消融量等数据成果;研究冰川消融对下游水资源影响。6 .任务分工在充分利用各类已有冰川分布、
20、面积、储存量调查成果的基础上,国家与地方共同形成冰川调查成果。国家负责在藏东南、西昆仑等冰川集中分布区开展典型区域1:20万航空物探冰川厚度调查;牵头冰川专题调查研究。国家负责利用正射影像及DEM数据等基础数据开展冰川解译工作,并向地方下发冰川解译数据。四川、云南、西藏、甘肃、青海、新疆等省级自然资源主管部门根据国家下发的冰川解译数据,组织开展补充调查工作,明确冰川范围边界;负责在各自辖区开展代表性冰川实地调查和冰川水质量调查(见表2),并负责本辖区国家调查任务范围内冰川调查作业手续办理等工作。各地在冰川实测区域可根据工作条件选取代表性冰川,利用探地雷达获取不同测点的冰川厚度,采集冰川水样。国
21、家、地方共同开展冰川面积、冰川厚度、冰川储存量等指标计算与成果整编,共同形成全国及分省成果。发挥大专院校、科研院所和专家学者的作用,建立良好的合作共享机制,充分利用已有的冰川编目、模型构建、储存量计算、冰川消融等方面的研究成果,促进科研成果转化。表2相关省份负责典型冰川实测任务一览表地区名称冰川实测区域要求西藏L横断山系2 .念青唐古拉山系3 .喜马拉雅山系4 .冈底斯山系从不同山系中选取具备调查条件的代表性冰川,测量冰川厚度,核定冰川面积(边界线/边界点),计算单个冰川储存量。依据单个冰川特征,布设“井”、“米”或“丰”型测线(也可以根据实际情况尽量均匀布设),宜利用探地雷达等手段探测冰川厚
22、度及获取不同测点的冰川厚度。新疆1 .昆仑山系2 .喀喇昆仑-昆仑山系3 .天山山系青海1 .昆仑山系2 .羌塘高原山地-唐古拉山系3 .祁连山系甘肃祁连山系四川横断山系云南横断山系7 .进度安排(1) 2024年4月底前,国家完成2023年度夏季冰川覆盖区遥感数据处理。8月底前,国家完成冰川历史资料收集与集成处理,完成青藏高原冰川分布解译,分批次下发地方。国家、地方共同建立遥感解译标志。10月底前,各地根据国家下发的冰川解译数据,组织开展补充调查工作,完成各自辖区代表性冰川实地调查,提交调查成果。国家开展部分区域航空物探测量。12月底前,国家和地方共同完成青藏高原冰川面积统计,完成典型冰川厚
23、度测量,结合地方调查成果初步完成全国冰川储存量计算模型构建。(2) 2025年3月底前,国家完成采集的2024年度夏季冰川覆盖区遥感数据处理。7月底前,国家完成航空物探测量及数据处理,完成全国除青藏高原外冰川分布解译。9月底前,地方完成冰川分布补充调查。12月底前,国家和地方共同完成全国冰川面积、厚度、储存量计算,完成冰川面积变化计算,形成消融量计算研究成果。(3) 2026年6月底前,完成成果整理、校核,形成全国及分省冰川调查成果和数据库。7T2月,根据需要开展冰川年度变化调查工作。(四)地下水资源调查开展水文地质补充调查、地下水监测与统测、地表水与地下水转化调查、地下水资源评价等,查明含水
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 水资源 基础 调查 实施方案 2024
链接地址:https://www.desk33.com/p-1188720.html