角动量守恒定律与动量守恒定律的协变性疑难.docx
《角动量守恒定律与动量守恒定律的协变性疑难.docx》由会员分享,可在线阅读,更多相关《角动量守恒定律与动量守恒定律的协变性疑难.docx(14页珍藏版)》请在课桌文档上搜索。
1、角动量守恒定律与动量守恒定律的协变性疑难摘要:分析了经典角动量守恒定律不具有伽利略变换的不变性,动量守恒定律对于非惯性系系不协变,重新表述了角动量守恒定律和动量守恒定律,使其对于任何参照系都协变.关St询:角动量守恒定律:角动量定理:动量守恒定律;力学相对性原理:协变性一.经典角动量(动量矩)守恒定律不满足伽利略变换美国曾有物理学家对什么是守恒定律进行了论述,即“在某些特定的环境中相互作用的一组物体,该组不管发生什么样的变化,在观察期它的这种或者那种可测度的量总和(笔者注:或者之差)依旧恒定不变力学系统的对称性和守恒律的研究具有重要的理论意义和实际价值,动力学系统若存在某种对称性,则意味着系统
2、与该对称性相关的某种性质.由于动力学系统的对称性与不变量紧密相关,所以对称性也是积分运动方程的一个有力工具.角动量(动量矩)守恒定律是反映质点和质点系围绕一点或一轴运动的普遍规律,尽管角动量(动量矩)守恒定律可以从牛顿定律中推导出来,但是它不受牛顿定律适用范围的限制,不论是研究物体的低速运动还是面速运动,不论是宏观领域的物理现象还是微观领域的物理过程,角动量(动量矩)守恒定律已被大量实验证明是正确的,无一相悖.角动量守恒的实质上对应着空间旋转不变性(体系整体绕任意轴n旋转时,体系的哈密顿算符不变).当体系处于中心对称场或无外场时,体系具有空间旋转不变性.在科学中“一种对称性的发现比一种特定现象
3、的发现意义重大得多,像旋转不变性和洛伦兹不变性这样的时空对称性,统治着整个物理学在创立狭义相对论时,爱因斯坦利用了洛仑兹变换的不变性,而在创立广义相对论时,他把变换不变性提升为物理学的普遍原理,并从引力质量与惯性质量等同这一经验事实出发,把某种变换不变性作为表示空间结构四维性和对称张量的引力方程的前提.洛伦兹说过:“爱因斯坦把方法倒了过来,他不是从已知的方程组出发去证明协变性是存在的,而是把协变性应当存在这一点作为假设提出来,并且用它演绎出方程组应有的形式.”汤川秀树曾经说过:“当回顾物理学史时,我们会发现,这个历史几乎可称之为错误史,在许多科学家所相出的所有理论中,大多数是错误的,因而没有生
4、存下来下面首先研究一下角动量(动量矩)守恒定律的协变性问题,以匀速圆周运动为例:例1如下图,有一质量为m的小球(视为质点),在轻绳(忽略质量)的牵制下,在光滑的地面上绕O点做匀速(速率为V)圆周运动,如果忽略地面和空气摩擦阻力,问:小球在地面系和沿X轴匀速运动的小车(设小车的速度为U)坐标系(Ol-XlyI),角动量(动量矩)守恒定律是否都成立?解析:地球质量视为充分大,故稳定地保持为惯性系.假设地面系质点的坐标为(x,y),速度为y,横轴的分速度为V,纵轴的分速度为V,质点受到的力矩质点的角动量为L,拉力为f,拉力在X轴、y轴的分力分别为八、0横轴的分加速度为Xz纵轴的分加速度为y;小车系质
5、点的坐标为(x,y),速度为横轴的分速度为x/,纵轴的分速度为山。质点受到的力矩质点的角动量为L,横轴的分加速度为X”,纵轴的分加速度为(1)在地面系设初相为O,v=ojR,x=Rcost,y=Rsint;x,=-Rojsint,y,=Rcost;fx=mx,-mR2costfy=my,=-mR2sint.M=RXf=O9质点对圆心的角动量1.=mR2,方向不变,角动量(动量矩)守恒定律成立.小车系一一将运动方程作伽利略变换,写出小车系运动方程:x=x-ut=Rcosf-M/y=y=Rsnt;x,=x,-u=-Rsint-u,y,=y-Rcost;p=mv=(-nRsint-mu,mRcost
6、f0),r=(Rcost-ut,Rsint,0),fx=mx,-mR2cost,fy=my,-mR2sint.1.=rp=(0,0,mR1+umRsint-utmRcost),Lr=(0,0,utmR2sint),Mi=rf=0,0,utmR2sint).根据上面的计算可以得出,角动量、合力矩不具有伽利略变换的不变性,经典角动量(动量矩)守恒定律也不具有伽利略变换的不变性,即不满足力学相对性原理,文献14也说明了这个问题.伽利略相对性原理仅指经典力学定律在任何惯性参考系中数学形式不变一所有惯性系都是等价(平权)的.二.爱因斯坦对于相对性原理的坚信爱因斯坦在1927年为纪念牛顿逝世200周年的文
7、章中指出:“伽利略已经在认识运动定律上作了一个意义重大的开端.他发现了惯性定律和地球引力场中的自由落体定律.但是应当注意,上面这两条陈述都是讲的整个运动,而牛顿的运动定律则回答这样的问题:在外力的作用下,质点的运动状态在一个无限短的时间内应该如何变化?只有考虑到在无限短的时间内发生了什么(微分定律),牛顿才得到一个适用于任何运动的公式.”爱因斯坦认为:“我相信自然定律的简单性具有一种客观的特征,它并非只是思维经验的结果.”爱因斯坦之所以不愿意“舍弃相对性原理”,那是因为他坚信,“有两个普遍事实在一开始就给予相对性原理的正确性以很有力的支持.”爱因斯坦指出:“必须承认经典力学在相当大的程度上是真
8、理因此,在力学的领域中应用相对性原理必然达到很富的准确度.”爱因斯坦指出:“由于我们的地球是在环绕太阳的轨道上运行,因而我们可以把地球比作以每秒大约30公里的速度行驶的火车车厢.如果相对性原理是不正确的,我们就应该预料到,地球在任一时刻的运动方向将会在自然界定律中表现出来,而且物理系统的行为将与其相对于地球的空间取向有关但是,最仔细的观察也从来没有显示出地球物理空间的这种各向异性(即不同方向的物理不等效性).这是一个支持相对性原理的十分强有力的论据.”爱因斯坦这段论述的逻辑非常清晰:如果能找到地球物理空间各向异性的证据,就可以证明“相对性原理”是不正确的!因为力学相对性原理要求所有惯性系等价,
9、同一个物理过程在静止惯性参照系角动量守恒,在运动惯性参照系角动量不守恒,这是力学相对性原理所不允许的,如果角动量(动量矩)守恒定律不满足伽利略变换的不变性,就应当从牛顿力学中独立出来,这样经典力学便由牛顿力学与角动量(动量矩)守恒定律共同组成,体系就比较复杂了.相对性原理是一个地位非常高的原理,它背后有着深刻的哲学和美学思想,它不是一个物理理论,而是对于物理理论的一个要求,满足相对性原理是一个理论成立的必要条件.从数学角度来看,物理定律满足协变性是必要的但不是充分的,这是合乎逻辑的.任何一个正确的命题,它的逆命题不一定成立,而逆否命题一定成立.相对性原理在物理学中的权威性就由它的逆否命题表述来
10、体现,它有否决权,不满足一定错误.在经典物理学中理论的建立程序为:实验一方程一对称性,而爱因斯坦在狭义相对论的建立中倒转了这个程序:对称性一方程实验,在广义相对论中爱因斯坦把这个倒转过来的程序又应用于引力场方程的建立.另外当把对称性的概念引入物理学中时,可以把运动的相对性作为一种对称性来看待.爱因斯坦追求的是一种普遍性的自然法则,他在自述中写到:渐渐地我对那种根据已知事实用构造性的努力去发现真实定律的可能性感到绝望了.我努力得越久,就越加失望,也越加相信,只有发现一个普遍形式的原理,才能使我们得到可靠的结果.物理学是研究客观世界的基本结构和基本规律的一门学科,必须寻求一般规律.物理学家中总是倾
11、向于相信,在地球上的实验室里发现的物理规律也适用于宇宙的其他角落,这是基于经验的一种朴素信仰.科学的发展也是在不断追求普遍的规律,牛顿的万有引力定律统一了地面上的落体定律与天体的运行规律,狭义相对论统一了电场和磁场.三.对于角动量(动量矩)守恒定律表述的重新思考角动量(动量矩)守恒定律对于非惯性系,需要引入惯性力矩,除非合力矩为0,一般角动量不守恒,因而不能直接在非惯性系中应用角动量(动量矩)守恒定律,不符合爱因斯坦的科学思想一一物理规律对于所有的观察者都相同.爱因斯坦认为:“科学没有永恒的理论,一个理论所预言的论据常常被实验所推翻.任何一个理论都有它的逐渐发展和成功的时期,经过这个时间以后,
12、它就很快地衰落.与一个没有意义问题的正确答案相比,一个重要问题的错误答案具有无法比拟的重要意义.物理学中没有任何概念是先验地必然的,或者是先验地正确的.惟一地决定一个概念的生存权的,是它同物理事件(实验)是否有清晰的和单一而无歧义的联系.只有考虑到理论思维同感觉经验材料全部总和的关系,才能达到理论思维的真理性.”笔者认为,作为力学定律(定理)必须具有普遍性,不具有协变性的命题不能称之为力学定律(定理),不能等同于一般的真命题,对于某一个确定的物理过程,在一个参照系成立,在另一个参照系也必须成立,即满足协变性的要求.经典角动量(动量矩)守恒定律不能满足这个要求,而且在很多情况下质点受到的合力矩不
13、等于0,因此有必要重新表述角动量(动量矩)守恒定律,使其满足上述要求叱卡尔萨根在魔鬼出没的世界指出:对任何事物(包括科学)的执著都会导致迷信.我们不能认为角动量守恒定律应用了这么长时间一定是完善的.有人认为:惯性系对于力学规律是平权的,意味着力学规律的数学表述具有协变性,不是意味着力学规律的结论具有协变性.在一个惯性参考系中,质点系相对某点角动量守恒,意味着质点系对该点的力矩和为零,如果变换到另外一个惯性系,参考点发生变化,质点系对该点的力矩和可能就不为零,条件发生了变化,结论自然会发生变化.如果这样理解,我们就可以去掉机械能守恒定律,直接表述为动能守恒定律:如果质点(或者废点组)受到合外力为
14、0,则质点(或者质点组)的动能不变,即若FQ0,则Ek=ConSt.这样表述对于惯性系协变,对于非惯性系不协变一条件发生了变化,增加了非惯性力合外力不等于。了.如果表述为:如果质点(或者质点组)受到合外力的功为0,则质点(或者质点组)的动能不变,即若IV仔0,则Ek=ConSt.这样表述对于惯性系和非惯性系都不协变,例如匀速圆周运动.四.角冲量(冲量矩)的引入在刚体转动中引入冲量矩的概念力矩对时间的累积效应,角冲量(冲量矩)的定义:质点对于某一点(或某轴)受到的合力矩对于时间积分称之为角冲量(冲量矩),记为tN(t)=Mdt.这个定义在2019年经全国科学技术名词审定委员会审定发布.对质点的冲
15、量矩等于力矩与力矩作用时间的乘积,即冲量矩dL=Mdt.对于质点系,由于内力矩可以相互抵消,可得dL=(M外+M内)dt=(M外+O)d=M*dt.在一段时间内,质点或质点系所受的冲量矩为这段时间内冲量矩的累加,dLa=ZdL=ZM外dt(dL为矢量,方向与M外相同,单位是Nms).把角动量定理两边同时积分可以得到角动量定理积分形式一一角冲量(冲量矩)定理:质点对于某一点(或某轴)的角动量与该点受到角冲量(冲量矩)之差不变,即1.(t)-M=L(t0)t该命题与角动量定理的微分形式是等价命题,具有伽利略变换的不变性,满足力学相对性原理.玻尔认为:描述自然界的目的不在于提示现象的真实本质,而只在
16、于尽可能远地把各种各样经验的各个方面之间的关系追溯出来.”冲量矩大小等于作用在物体上的外力矩与作用时间的乘积,方向与力矩相同,也等于作用在物体上的冲量与力臂的乘积,课用以描述物体转动状态变化的情况一一转动物体所受的冲量矩等于这段时间转动物体动量矩的变化.著名的科学家兼哲学家怀特海指出,不论探讨哪个领域,任何事物的本质都不可缺少地具有两个原则:变化和守恒.五.角动量(动量矩)守恒定律与动量守恒定律的协变性问题角动量(动量矩)守恒定律对于任何参照系,质点在运动过程中对于同一点(或某轴)的角动量与角冲量(冲量矩)之差不变,L-N=LaJ=CGnSt(内禀角动量).内禀角动量对于所有的平动参照系相同,
17、与参考点的选择有关.这样角动量(动量矩)守恒定律就是角动量定理的变形,由于角动量定理对于所有的参照系都协变,因此角动量(动量矩)守恒定律对所有参照系都协变,对所有参考点都成立,表达了旋转过程中的不变量.对于孤立系统由于所受外力为。,角冲量(冲量矩)始终为0,因此角动量始终守恒,这也是现代物理学中由于把场包括在内而不必引入角冲量(冲量矩)的原因.广义相对论认为:所有的参照系在描述自然规律方面都是等价的,即所有的自然规律在一切参照系中的数学形式都是相同的.角动量定理对于所有参照系都成立,这样表述角动量(动量矩)守恒定律与角动量定理积分形式比较,只进行了一次恒等变形,经典角动量(动量矩)守恒定律的一
18、个推广,所以对于所有参考系都成立,符合爱因斯坦的思想一一物理规律对于所有的观察者都相同.爱因斯坦认为,物理理论分为“构造理论”和“原理理论”,原理理论”应用分析而不是综合的方法,其出发点和基础不是假设的要素,而是经验上观察到的现象的一般性质、一般原理;从这些性质和原理导出这样一些数学公式,使其用于每一自身出现之处“原理理论的优点,是它们逻辑上的完善,和它们基础的牢固文献8证明了动量定理对于所有的参照系都协变,动量守恒定律仅仅对于惯性系协变,对于非惯性系不协变,为了解决这一矛盾类似地,动量类比上面的角动量,合外力冲量t7/以=/出类比角冲量(冲量矩),动量守恒定律表述为一对于任何参照系,一个系统
19、%的动量与合外力冲量之差是一个常数(内禀动量),Pa)-/)=P4J=const.内禀动量对于不同的参照系不同,因为P(to)对于不同的参照系不同.这样动量守恒定律就是动量定理的变形,由于动量定理对于所有参照系都协变,因此动量守恒定律对于所有的参照系都协变,对所有方向都成立,反映了空间的均匀性.动量定理方程的两边同时叉乘力臂R就得到角动量定理,同理动量守恒定律方程的两边同时叉乘力臂R就得到了角动量守恒定律.动量、角动量(动量矩)、角冲量(冲量矩)都不具有伽利略变换的不变性,冲量具有伽利略变换的不变性.建立广义协变的守恒定律一直是广义相对论中的基本问题之一,文献9证明了动量定理对于所有参照系都协
20、变,经典动量守恒定律对于所有惯性系守恒条件协变,对于非惯性系不协变,,在狭义相对论框架内经典动量守恒定律对于所有的惯性系也协变经典角动量(动量矩)守恒定律对于惯性系也不协变.重新表述角动量(动量矩)守恒定律、动量守恒定律后分别是角动量定理、动量定理的等价形式,自然符合相对性原理的要求,应用范围拓广了,不再仅仅适用于合外力为0或者合外力力矩为0在机械能方面,保守力作用下系统的拉格朗日量L定义为动能与势能之差:L=T-Ut与此类似.在均匀时空下,体系的拉氏函数就反映了体系运动的能量.于是我们可以这样理解:当一个体系处于外场中,设法消除外场的影响,使之处于局部均匀的时空时,体系所具有的运动能量就是拉
21、格朗日函数.类似地,当一个体系处于外场中,设法消除外场的影响,使之处于局部均匀时空时,体系所具有的运动动量就是系统的动量与合外力冲量之差;体系所具有的运动旋转量就是系统的角动量与角冲量(冲量矩)之差.动量守恒定律最好称为运动量守恒定律,角动量(动量矩)守恒定律最好称为旋转量守恒定律,为了与传统理论一致,不改变名称也可以.牛顿讲:“大自然总是喜欢变化与快乐.”变化未必只有一个物理量发生变化,在变化过程中几个物理量之间以某种关系保持守恒,在变化过程中找寻不变量应当是物理学的重要任务之一.在物理学中,发现任何一个能概括许多现象的守恒量都是令人欣喜的事.赵凯华认为:“研究一个规律的表述所具有的对称性,
22、并设法消除某种不对称因素,从而使其规律的表述具有更多的对称性,这无疑是有重要意义的.因为它不仅满足人类对于美(对称,和谐)的心理追求,而且更重要的是使表述的规律具有更大的普遍性.有人可能认为引入角冲量(冲量矩)没有任何价值,其实很多科学概念最初都是这样,例如虚数,数学家莱布尼茨甚至说:“虚数是神灵遁迹的精微而奇异的隐避所,它大概是存在和虚妄两界中的两栖物”,但是经过不断的发展,数学家揭去了虚数神秘的面纱,实际上虚数不是想象出来的,而它是确实存在的.正所谓:“真理性的东西一定可以经得住时间和空间的考验,最终占有自己的一席之地”,于是它成了数学系中的一颗新星,解决了好多的“无能为力”.朗道的力学中
23、说:“如果系统整体相对参考系K,静止,则V是系统质心的速度,而UV是系统相对于参考系K的总动量P,进而有M=M+RXP.就是说,力学系统的角动量是由其相对静止的参考系中的“内禀角动量”和整体运动的角动量RXP构成.笔者认为朗道所指的整体运动的角动量就是角冲量(冲量矩),在这里多出一个物理量角冲量(冲量矩),类似于在某参考系观察一个静止电荷,它只激发静电场,只需用标势描述,但是变换到另一参考系时,电荷是运动的,除了电场之外还有磁场,必须用A和描述.在上面匀速圆周运动的实例中,对于小车系而言勿3是内禀角动量,整体运动的角动量角冲量(冲量矩)UinRsint-utmR3cosst,角动量为S+umR
24、sin3t-utmR3costt角动量与角冲量(冲量矩)之差为如f3,这个守恒量是对于所有的平动参照系相同,只与参考点的选择有关.在上面的命题中,当合力矩也等于O时,便是经典角动量(动量矩)守恒定律,符合对应原理要求,即经典角动量(动量矩)守恒定律是上述命题的一个特例,经典角动量(动量矩)守恒定律在运动系需要增加一个物理量一一角冲量(冲量矩),对于固有参照系这一项正好为O.对于同一个物理过程,不同参照系的观察者测量的机械能(动能+势能)、动量与冲量之差、角动量与角冲量(动量矩与冲量矩)之差都是协变量,都是常量或者都是变量.在地球绕日运动的椭圆轨道中,以太阳为参照系角动量守恒,以相对于太阳匀速运
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 角动量守恒定律 动量 守恒定律 变性 疑难
链接地址:https://www.desk33.com/p-1248079.html