1857.PLC控制的水箱液位控制系统毕业论文.doc
《1857.PLC控制的水箱液位控制系统毕业论文.doc》由会员分享,可在线阅读,更多相关《1857.PLC控制的水箱液位控制系统毕业论文.doc(40页珍藏版)》请在课桌文档上搜索。
1、毕业论文 题 目 PLC控制的水箱液位控制系统 系 别 机电工程系 专 业 电子信息工程技术 班 级 姓 名 指导教师 PLC控制的水箱液位控制系统摘要在人们生活以及工业生产等诸多领域经常涉及到液位和流量的控制问题, 例如居民生活用水的供应, 饮料、食品加工, 溶液过滤, 化工生产等多种行业的生产加工过程, 通常需要使用蓄液池, 蓄液池中的液位需要维持合适的高度, 既不能太满溢出造成浪费, 也不能过少而无法满足需求。因此液面高度是工业控制过程中一个重要的参数,特别是在动态的状态下,采用适合的方法对液位进行检测、控制,能收到很好的效果。可编程控制器(PLC)是计算机家族中的一员,是为工业控制应用
2、而设计制造的,主要用来代替继电器实现逻辑控制。 PID控制(比例、积分和微分控制)是目前采用最多的控制方法。本文主要是对一水箱液位控制系统的设计过程,涉及到液位的动态控制、控制系统的建模、PLC控制、PID算法、传感器和调节阀等一系列的知识。作为单容水箱液位的控制系统,其模型为一阶惯性函数,控制方式采用了PID算法,控制核心为S7-200系列的CPU222以及A/D、D/A转换模块,传感器为扩散硅式压力传感器,调节阀为电动调节阀。选用以上的器件设备、控制方案和算法等,是为了能最大限度地满足系统对诸如控制精度、调节时间和超调量等控制品质的要求。关键词 PLC PID 液位控制目 录第一章 绪论4
3、第二章 设计任务与要求62 . 1基本任务.62.2基本要求62.3 给定条件62.4 主要性能指标62.5 扩展功能6第三章 总体论证73.1 总体方案的选择73.1.1 控制方法选择73.1.2 系统组成73.2 确定系统功能、性能指标8第四章 系统设计94.1 建模过程94. 模型参数的确定104. 软、硬件功能划分114. 系统功能划分、指标分配和框图构成12(1)PLC系统12(2)前向通道13(3)后向通道13第五章 系统开发145.1 硬件开发系统配置145.1.1 PLC系统CPU、模/数转换模块、数/模转换模块145.1.2 前向通道传感器155.1.3 后向通道电动调节阀1
4、55.2 PID操作指令165.2.1 PID算法165.2.2 回路输入、输出转换及标准化195.2.3 控制方式205.2.4 回路表215.2.5 PID指令225.2.6 PID的编程步骤235.3 软件开发245.3.1 确定输入/输出关系,建立数学模型,寻找合适算法245.3.2 调节器参数整定255.3.3 程序流程图275.3.4 程序29第六章 连机调试32总 结34致 谢36参考文献37第一章 绪论可编程控制器(简称PLC或PC)是一种新型的具有极高可靠性的通用工业自动化控制装置,是一种数字运算操作的电子系统。它以微处理器为核心,有机地将微型计算机技术、自动化控制技术及通信
5、技术容为一体,主要用来代替继电器实现逻辑控制,随着技术的发展,这种装置的功能已经大大超过了逻辑控制的范围。它具有控制能力强、可靠性高、配置灵活、编程简单、使用方便、易于扩展等优点,是当今及今后工业控制的主要手段和重要的自动化控制设备。PLC等主要品牌有:西门子、三菱、Koyo、OMRO等,近年来,德国西门子(SIEMENS)公司的SIMATIC-S7系列的PLC,在我国已经广泛应用于各行各业的生产过程的自动控制中。 液面高度是工业控制过程中一个重要的参数,特别是在动态的状态下,采用适合的方法对液位进行检测、控制,能收到很好的效果。液位控制是工业生产中典型的过程控制问题,对液位准确的测量和有效的
6、控制是一些设备优质、高产、低耗和安全生产的重要指标。由于它便于直接观察、容易测量、获取方便、过程时间常数一般比较小、价格低廉等特点,所以被广泛应用于工业测量。在工业过程控制系统中,目前采用最多的控制方式依然是PID控制。即使在美国、日本等工业发达国家,PID控制的使用率仍达90%,可见PID控制在工业过程控制中占有异常重要的地位。PID控制技术经历了数十年的发展,从模拟PID控制发展到数字PID控制,技术不断完善与成熟。尤其近十多年来,随着微处理技术的发展,国内外对智能控制的理论研究和应用研究十分活跃,智能控制技术发展迅速,如专家控制、自适应控制、模糊控制等,现己成为工业过程控制的重要组成部分
7、。由于液体本身的属性及控制机构的摩擦、噪声等的影响,控制对具有一定的纯滞后和容量滞后的特点,液位上升的过程缓慢,呈非线性。因此液位控制装置的可靠性与控制方案的准确性是影响整个系统性能的关键。本课题针对液位控制设计了一个由压力传感器、PLC、电动调节阀等组成的系统,并采用了增量式PID算法对其控制。第二章 设计任务与要求2.1基本任务对单容水箱液位/压力控制系统。这是一个单回路反馈控制系统,控制的任务是使水箱的液位/压力等于给定值,减小或消除来自系统内部或外部扰动的影响。用液位/压力参数为被控对象。交流电动机带动齿轮泵通过阀1向上水箱供水,调节阀2使之同时向外排水,令入水的速度大于出水的速度,达
8、到被控参数(液位/压力)的动态调整。2.2 基本要求 对单容水箱,用西门子S7-200为控制核心,辅助以单片机系统配套的A/D、D/A转换单元及电路,通过执行数字PID程序实现参数的自动调整(设定值在单片机键盘上完成),使水箱的实际液位/压力值与设定值接近,最终稳定于设定值。组成单闭环水位调节系统,,要求水位可以在一定范围内由人工设定,且各种测量、控制参数可在人机界面上显示、设定。2.3给定条件 控制对象:单容水箱为核心的水循环系统 检测元件:压力式液位传感器 执行元件:电动调节阀2.4 主要性能指标 液位控制范围:0-30cm 最小区分度:1cm 控制精度:液位控制的静态误差1cm2.5扩展
9、功能 通讯端口采用的是RS-485总线,允许将S7-200 CPU同编程器或其它一些设备连接起来。 通过扩展模块可增加CPU的I/O点数,也可提供其它通讯功能。 人机界面触摸屏第三章 总体论证3.1 总体方案的选择单容水箱的液位控制系统是一阶惯性系统,原因是此系统的数学模型为:,此模型为一阶传递函数。3.1.1 控制方法选择 单容水箱液位控制系统可归属于一阶惯性环节,一般来说,对一阶惯性环节的过渡过程控制,可采用以下几种控制方案:(1)输出开关量控制;(2)比例控制(P控制);(3)比例积分控制(PI控制);(4)比例积分加微分控制(PID控制)。PID控制适用与负荷变化大、容量滞后较大、控制
10、品质要求又较高的控制系统。另外,PID算法有两种常见的实现形式:位置型PID算法和增量型PID算法,结合本系统设计任务与要求,以及以上对几种控制方法的分析来看,增量式PID控制方法最适合本系统采用。3.1.2 系统组成以现代控制理论和PLC为基础,采用数字控制、显示、A/D与D/A转换,配合执行器与控制阀构成的PLC控制系统,在过程控制中得到越来越广泛的应用。由于本例是一个典型的检测、控制型应用系统,因此,应以PLC为核心组成一个专用PLC应用系统,以满足检测、控制应用类型的功能要求。3.2 确定系统功能、性能指标本例以实现设计任务基本要求为重点,力求在满足主要性能指标的基础上实现系统的最佳性
11、能/价格比,对于系统要求的扩展功能将在最后讨论。根据设计任务基本要求,本系统应具有以下几种基本功能: 可以进行水位设定,并自动调节水位到给定水位值; 可以调整PID控制参数,以满足不同控制对象与控制品质的要求; 可以实时显示给定值与水位实测值。系统主要性能指标如下: 液位控制范围:0-30cm 最小区分度:1cm 控制精度:液位控制的静态误差1cm第四章 系统设计4.1 建模过程系统示意图如图4-1所示: 其具体的建模过程为:被控过程的数学模型就是液位高度h与流入量Q1 之间的数学表达式。根据动态物料平衡关系,有:写成增量形式: 式中,、和分别为偏离某平衡状态、 和的增量,A为水箱的横截面积。
12、静态时应有,。发生变化,液位h也随之变化,使水箱出口处静压力发生变化,因此也发生变化,与h的近似线性关系为: 式中,R2为阀门2的阻力系数,称为液阻。将、两式整理得:经拉氏变换,得单容液位过程传递函数为:式中,为过程放大系数,;为过程的时间常数,;C为过程容量,。式为一阶传递函数,可知单容水箱液位控制系统为一阶惯性系统。确定其放大系数和过程的时间常数便可以完整的把模型建好,以下便讨论模型参数的确定过程。4. 模型参数的确定由公式我们知道,放大系数和时间常数与液阻和过程容量有关,所以如何确定液阻R2和过程容量C便成为问题的关键,又根据公式可知液阻R2可由 得出,而这些值可以由实验获得,其具体过程
13、如下:在不考虑容器扰动影响的情况下,管口流出处液体的速度为:D为水箱底部出水口的直径,其测量值为 0.007m,所以出水口的横截面积S=0.00003848m2。 在此实验中,由于出水阀开度保持不变,出水速度只与液位高度有关。因出水管的流量为,根据实验所测得的多组数据,可以计算出出水管的液阻,见表4-1。多次求平均可得液阻值为6370.207。另外,水箱底部截面积的实验测量值为 0.06605 m2,由此可求得过程放大系数K0=6370.207,过程的时间常数T0=420.7648。所以系统无时延模型为:表4-1 实验数据h(cm) (m/s) qv液阻R2 46.2 3.00920.0001
14、15807 43.0 2.90310.0001117243.20.0000048000 40.0 2.80.00010830.0000047500 38.22.7362750.0001051.80.0000036000 36.22.6636820.00010220.0000036666.667 34.22.5890540.000099620.000002483333.333 32.2 2.51221 9.66*10-520.0000036666.667 30.22.432941 9.36*10-520.0000036666.667 28.2 2.351 9.04*10-520.00000326
15、250 26.22.266098 8.72*10-520.00000326250 24.22.177889 8.38*10-520.00000345882.353 22.22.085953 8.02*10-520.00000365555.556 20.21.989774 7.65*10-520.00000375405.405 18.21.8887037.26*10-520.00000395128.205 16.21.7819096.85*10-520.00000414878.0494. 软、硬件功能划分为了简化系统硬件、降低硬件成本、提高系统灵活性和可靠性,有关PID运算、输入信号滤波及大部分
16、控制过程都可由软件来完成,硬件的主要功能是液位信号的传感、A/D转换、D/A转换及输出命令的执行。4. 系统功能划分、指标分配和框图构成根据系统总体方案,系统由四个主要功能模块组成,其总体框图如图4-2所示:图4-2水位控制系统总体框图4.4.1 PLC系统 PLC系统是整个控制系统的核心,它完成整个系统信息处理及协调控制功能。由于系统对控制速度、精度及功能的要求无特别之处,因此可以选用目前广泛使用的MCS-51系列的单片机以及西门子S7-200系列的PLC。P所以本系统选用了西门子S7-200系列的PLC。PLC本身的CPU不带有A/D、D/A转化功能,而本系统有模拟输入、输出量,所以PLC
17、系统中还要包括扩展模块:模/数转换模块、数/模转换模块。4.4.2 前向通道前向通道是信息采集的通道,主要包括传感器、信号放大等电路。由于液位变化是一个相对缓慢的过程,因此前向通道中没有使用采样保持电路。另外,信号的滤波可由软件实现,以简化硬件,降低硬件成本。4.4.3 后向通道 后向通道是实现信号输出的通道,PLC系统产生的控制信号控制电动调节阀的转动角度,实现对进水量的控制,从而最终实现对液位的控制目的。第五章 系统开发5.1 硬件开发系统配置5.1.1 PLC系统CPU、模/数转换模块、数/模转换模块PLC系统以西门子S7-200系列CPU222为系统的核心,外扩EM 231作为A/D转
18、换模块和EM 232作为D/A转换模块,如图5-1所示。 图5-1 PLC原理示意图(1)CPU:因本系统只有1模拟量输入液位,1模拟量输出电动调节阀转动的角度,而且要有扩展能力,所以选用PLC的型号为:西门子S7-200系列的CPU 222 DC/DC/DC,即直流输入、直流输出、晶闸管输出型。(2)模拟量输入模块EM 231(3) 模拟量输出模块EM 232 CPU222可以提供DC 5V电流为340mA,而EM 231模块耗DC 5V总电流为10mA,EM 232模块耗DC 5V总电流为10mA。扩展模块消耗的DC 5V总电流小于CPU222可以提供DC 5V的电流,所以这种配置是可行的
19、。5.1.2 前向通道传感器液位经压力式液位传感器和信号放大电路产生0-5V的模拟电压信号送入AD转换器的输入端。前向通道的设计主要是传感器的选择。本系统为液位控制系统,其目的是把水箱液体的高度控制在给定值,被控参数是高度h,而不同的高度会产生不同的液压,所以液位控制系统选用压力式液位传感器,我们这里选用了扩散硅式压力传感器。本系统环境温度变化不大,而且温度因素对控制参数影响很小,所以相对于其他类型的压力传感器,选用扩散硅传感器还是比较适合本系统的。5.1.3 后向通道电动调节阀在实际工业生产中,调节器是构成自动控制系统的核心仪表,它将来自变送器的测量信号Vi与调节器的内给定或外给定信号Vs进
20、行比较,得到其偏差E,即E=Vi-Vs,然后调节器对该偏差信号按某一规律进行运算,输出调节信号控制执行机构的动作,以实现对被控参数如温度、压力、流量或液位等的自动控制作用。根据本系统的特性,我们选取了电动调节器,其主要的工作原理如下:图5-2为角行程电动调节阀的组成框图,它是由伺服放大器和伺服电动机两部分组成。来自调节器的DC 420mA信号Ii与位置反馈信号If进行比较,其差值经放大后控制两个伺服电动机正转或反转,再经减速器后,改变调节阀的开度。同时,输出轴的位移经位置发生器转换成电流信号If。当时,电动机停止转动,调节阀处于某一开度,即式中,为输出轴的转角;K为比例系数。 由图5-2可见,
21、电动调节阀还提供手动操作,以便在系统掉电时提供手动控制,保证系统的调节作用。图5-2 电动调节阀的组成框图 5.2 PID操作指令S7-200 CPU提供PID回路指令(成比例、积分、微分循环),进行PID计算。PID回路的操作取决于存储在36字节回路表内的9个参数。5.2.1 PID算法 PID控制器管理输出数值,以便使偏差(e)为零,系统达到稳定状态。偏差是给定值SP和过程变量PV的差。PID控制原则以下列公式为基础,其中将输出M(t)表示成比例项、积分项和微分项的函数: 式中,PID运算的输出,是时间的函数; PID回路的比例系数; PID回路的积分系数; PID回路的微分系数; PID
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 1857. PLC 控制 水箱 控制系统 毕业论文
链接地址:https://www.desk33.com/p-1266147.html