可控核聚变科学技术前沿问题和进展.docx
《可控核聚变科学技术前沿问题和进展.docx》由会员分享,可在线阅读,更多相关《可控核聚变科学技术前沿问题和进展.docx(12页珍藏版)》请在课桌文档上搜索。
1、一、前言可控核聚变能源是未来理想的清洁能源。在磁约束聚变领域,托卡马克研究目前处于领先地位。我国正式参加了国际热核聚变实验堆(ITER)项目的建设和研究,同时正在自主设计、研发中国聚变工程试验堆(CFETR)。在惯性约束领域,Z箍缩作为能源更具潜力,有可能发展成具有竞争力的聚变-裂变混合能源。本文重点介绍了磁约束聚变的前沿问题和我国在Z箍缩方面的研究进展。二、磁约束聚变前沿问题(一)磁约束聚变的研究意义和现状磁约束聚变是利用特殊形态的磁场把宛、宛等轻原子核和自由电子组成的处于热核反应状态的超高温等离子体约束在有限的体积内,使等离子体受控制地发生大量的原子核聚变反应,释放出能量。磁约束聚变通过低
2、密度长时间燃烧的方式实现笊、僦等离子体的自持燃烧,并将这种燃烧维持下去。世界上的磁约束聚变装置主要有托卡马克、仿星器、磁镜三种类型,其中托卡马克最容易接近聚变条件而且发展最快。目前.,磁约束聚变已经取得重大进展,我国正式参加了ITER项目的建设和研究;同时作为ITER装置与聚变示范堆(DEMO)之间的桥梁,我国正在自主设计、研发CFETR项目。这些措施将使我国的磁约束聚变研究水平位于国际前列。(二)磁约束聚变的前沿问题磁约束聚变的研究开发不仅耗资巨大,而且在科学和技术上充满了挑战,以至于在经历了40多年的较具规模的国际聚变研究之后,直到20世纪90年代才基本获得可以建造磁约束聚变实验堆的必要知
3、识和技术。磁约束聚变还处于探索阶段,存在很多物理和工程技术方面的问题需要解决。目前,国际磁约束聚变界的主要研究内容是与ITER装置相关的各类物理与技术问题。ITER装置设计总聚变功率达到5x105kW,是一个电站规模的实验反应堆。它的作用和任务是利用具有电站规模的实验堆证明笈、氟等离子体的受控点火和持续燃烧,验证聚变反应堆系统的工程可行性,综合测试聚变发电所需的高热流和核部件,实现稳态运行,从而为建造聚变能示范电站奠定坚实的科学基础和必要的技术基础。ITER计划的科学目标具体包括:集成验证先进托卡马克运行模式;验证稳态燃烧等离子体物理过程;聚变阿尔法粒子物理;燃烧等离子体控制;新参数范围内的约
4、束定标关系;加料和排灰技术。ITER装置运行第一阶段的主要目标是建设一个笊、僦燃烧能产生5105kW聚变功率、聚变增益系数Q=I0、脉冲维持大于400S的托卡马克聚变堆。在ITER装置中将产生与未来商用聚变反应堆相近的笈、瓶燃烧等离子体,供科学家和工程师研究其性质和控制方法,这是实现聚变能必经的关键一步。ITER装置运行的第二阶段将探索实现稳态高约束的高性能燃烧等离子体,聚变增益系数Q=5、脉冲维持大于3000so这种稳态高性能的先进燃烧等离子体是建造托卡马克型商用聚变堆所必需的。ITER计划在后期还将探索实现高增益的燃烧等离子体。ITER计划科学目标的实现将为商用聚变堆的建造奠定可靠的科学和
5、工程技术基础。此外,ITER计划的工程技术目标是通过创造和维持笊、氟燃烧等离子体,检验和实现各种聚变技术的集成,并进一步研究和发展能直接用于商用聚变堆的相关技术。上述工作是设计与建造商用聚变堆之前所必须的,而且只能在ITER装置上开展。ITER计划在工程技术方面部分验证的聚变堆的工程技术问题包括以下几个。(1)堆级磁体及其相关的供电与控制技术研窕;(2)稳态燃烧等离子体(产生、维持与控制)技术,即无感应电流驱动技术、堆级高功率辅助加热技术、堆级等离子体诊断技术、等离子体位形控制技术、加料与除灰技术的研究;(3)初步开展高热负荷材料试验;(4)包层技术、中子能量慢化及能量提取、中子屏蔽及环保技术
6、研窕;(5)低活化结构材料试验(TBM),氟增殖剂试验研究,氤再生、防氟渗透实验研究,氟回收及氟纯化技术研究;(6)热室技术,堆芯部件远距离控制、操作、更换及维修技术研究。ITER将集成当今国际受控磁约束核聚变研究的主要科学和技术成果,第一次在地球上实现能与未来实用聚变堆规模相比拟的受控热核聚变实验堆,解决通向聚变电站的关键问题。ITER计划的成功实施,将全面验证聚变能源开发利用的科学可行性和工程可行性,是人类受控热核聚变研究走向实用的关键一步。(三)我国磁约束聚变研究的技术目标和发展规划我国核聚变能研究开始于20世纪60年代初,尽管经历了长时间非常困难的阶段,但始终能坚持稳定、渐进的发展。从
7、20世纪70年代开始,我国集中选择了托卡马克为主要研究途径,先后建成并运行了CT-6、KT-5、HT-6B、HL-1、HT-6M托卡马克实验装置。目前.,我国的托卡马克装置主要有华中科技大学的J-TEXT装置、核工业西南物理研究院的HL-2M装置和中国科学院等离子体物理研究所的EAST装置。在以上这些托卡马克装置的设计、研制和实验过程中,组建并锻炼了一批聚变工程师队伍,中国科学家在这些托卡马克装置上开展了一系列重要研究工作。我国未来聚变发展战略应瞄准国际前沿,广泛利用国际合作,夯实我国磁约束核聚变能源开发研究的坚实基础,加速人才培养,以现有中、大型托卡马克装置为依托,开展国际核聚变前沿课题研窕
8、,建成知名的磁约束聚变等离子体实验基地,探索未来稳定、高效、安全、实用的聚变工程堆的物理和工程技术基础问题。我国磁约束聚变的近期、中期和远期技术目标如下。(1)近期目标(20152021年):建立近堆芯级稳态等离子体实验平台,吸收消化、发展与储备聚变工程实验堆关键技术,设计、预研聚变工程实验堆关键部件等;(2)中期目标(20212035年):建设、运行聚变工程实验堆,开展稳态、高效、安全聚变堆科学研究;(3)远期目标(20352050年):发展聚变电站,探索聚变商用电站的工程、安全、经济性。为了尽早地实现可控聚变核能的商业化,充分利用我国现有的托卡马克装置和资源,制定了一套完整的符合我国国情的
9、中国磁约束聚变(MCF)发展路线示意图,如图1所示。20SOm建成)(2O25ftt实验稳态先进偏注A位彩、稳态H约束等离子体实就研究Iffl: e 10. 400$. SOoMW. D-r枪燃烧等离子体实监Il即:-S, 3 000s. 3S0MW,稔态长脓冲燃燃等离子体Iffi: 1:再验证.(?- -5.检走,约200MW. IOdPa 11:示依检证,Q0, i, GW, 50dp0J-TCXT 破裂控制基域等离r体研究P卜PP 1 GWct并网; 安全可密高收HL-2M 先进儡波X、高金数加热、W.诊断署的实验研究201$ 2020 2025 2030 2035 2(Mo2045 2
10、0S0 20552060IHM年图1中国磁约束聚变发展路线图未来十年,重点在国内磁约束的两个主力装置(EAST、HL-2M)上开展高水平的实验研究。EAST装置目前基本完成了升级,研究能力和实验条件有了大幅度的提高,可以开展大量的针对未来ITER装置和下一代聚变工程堆稳态高性能等离子体研究,实现磁场稳定运行在3.5T、等离子体电流LOMA,获得400S稳定、可重复的高参数近堆芯等离子体的科学目标,成为能为ITER装置提供重要数据库的国际大规模先进试验平台。结合全超导托卡马克新的特性,探索和实现两到三种适合于稳态条件的先进托卡马克运行模式,稳态等离子体性能处于国际领先水平。在此阶段,将重点发展专
11、门的物理诊断系统,特别是对深入理解等离子体稳定性、输运、快粒子等密切相关的物理诊断。在深入理解物理机制的基础上,发展对等离子体剖面参数和不稳定性的实时控制理论和技术,探索稳态条件下的先进托卡马克运行模式和手段。实现高功率密度下的适合未来反应堆运行的等离子体放电,为实现近堆芯稳态等离子体放电奠定科学和工程技术基础。同时需对装置内部结构进行升级改造,以满足稳态高功率下高参数等离子体放电的要求。在未来几年内,HL2M装置将完成升级,具有良好的灵活性和可近性,进一步发展2025MW的总加热和电流驱动功率,着重发展高性能中性束注入(NBI)系统(810MW);增加电子回旋、低杂波的功率,新增2MW电子回
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 可控 聚变 科学技术 前沿 问题 进展
链接地址:https://www.desk33.com/p-1302319.html