数列中的探究性问题解析版.docx
《数列中的探究性问题解析版.docx》由会员分享,可在线阅读,更多相关《数列中的探究性问题解析版.docx(23页珍藏版)》请在课桌文档上搜索。
1、-专题22 数列中的探究性问题数列中的探究性问题实际上就是不定方程解的问题,对于此类问题的求解,通常有以下三种常用的方法:利用等式两边的整数是奇数还是偶数的方法来加以判断是否存在;利用寻找整数的因数的方法来进展求解,此题的解题思路就是来源于此;通过求出变量的取值*围,从而对*围内的整数值进展试根的方法来加以求解对于研究不定方程的解的问题,也可以运用反证法,反证法证明命题的根本步骤:反设:设要证明的结论的反面成立作反设时要注意把结论的所有反面都要写出来,不要有遗漏归谬:从反设出发,通过正确的推理得出与条件或公理、定理矛盾的结论存真:否认反设,从而得出原命题结论成立一、题型选讲题型一、数列中项存在
2、的问题例1、(2018*期末)数列an满足,nN*,Sn是数列an的前n项和(1) 求数列an的通项公式;(2) 假设ap,30,Sq成等差数列,ap,18,Sq成等比数列,求正整数p,q的值;(3) 是否存在kN*,使得为数列an中的项.假设存在,求出所有满足条件的k的值;假设不存在,请说明理由 (1)利用关系式对一切nN*恒成立,通过赋值,整体处理,将复杂的递推关系式转化为an与an1的关系式,根据定义可求得数列an的通项公式,这也是处理复杂递推数列关系式常用的方法;(2)利用等差中项、等比中项的性质得到关于正整数p,q的方程,通过简单的分类讨论即可解决;(3)此题的难点在于对式子m1的处
3、理,两边平方得k23k18m22m1,两边同乘以4得4k212k724m28m4,分组配方得(2m2)2(2k3)263,利用平方差公式因式分解得(2m2k5)(2m2k1)63,因式分解及一定的代数变形技巧是解决这类不定方程问题的关键规*解答 (1) 因为,nN*,所以当n1时,1,所以a12,(1分)当n2时,由和,两式相除可得1,即anan11(n2),所以,数列an是首项为2,公差为1的等差数列,于是,ann1.(4分)(2) 因为ap,30,Sq成等差数列,ap,18,Sq成等比数列,所以于是或(7分)当时,解得当时,无正整数解,所以p5,q9.(10分)(3)假设存在满足条件的正整
4、数k,使得am(mN*),则m1,平方并化简得,(2m2)2(2k3)263,(11分)则(2m2k5)(2m2k1)63,(12分)所以或或(14分)解得m15,k14或m5,k3或m3,k1(舍去)综上所述,k3或14.(16分)例2、(2019*期初调查)数列an的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列,数列an前n项和为Sn,且满足S3a4,a5a2a3.(1) 求数列an的通项公式;(2) 假设amam1am2,求正整数m的值;(3) 是否存在正整数m,使得恰好为数列an中的一项.假设存在,求出所有满足条件的m值,假设不存在,说明理由 (1)建立方程组,求出公比和公差
5、,用分段的形式写出an的通项公式(2)对m分奇、偶数,根据通项公式和amam1am2建立方程,求出m的值(3)运用求和公式求出S2m和S2m1,计算,通过分析其值只能为a1,a2,a3,分情况讨论,解方程,求m的值规*解答 (1)设奇数项的等差数列公差为d,偶数项的等比数列公比为q.所以数列an的前5项依次为1,2,1d,2q,12d.因为所以解得(2分)所以an(4分)(2)因为amam1am2.1假设m2k(kN*),则a2ka2k1a2k2,所以23k1(2k1)23k,即2k13,所以k1,即m2.(6分)2假设m2k1(kN*),则a2k1a2ka2k1,所以(2k1)23k12k1
6、,所以23k11.因为23k1为整数,所以必为整数,所以2k11,所以k1,此时2303.不合题意(8分)综上可知m2.(9分)(3) 因为S2m(a1a3a2m1)(a2a4a2m)3mm21.(10分)S2m1S2ma2m3mm2123m13m1m21.(11分)所以33.(12分)假设为数列an中的项,则只能为a1,a2,a3.11,则31,所以3m10,m无解(13分)22,则32,所以3m11m20.当m1时,等式不成立;当m2时,等式成立;当m3时,令f(*)3*11*23*1*2.所以f(*)3*2*,f(*)3*2.因为f(*)在(14分)33,则33,所以m210,即m1.(
7、15分)综上可知m1或m2.(16分)题型二、数列中的等差数列或者等比数列的存在问题例3、(2018*期末)各项都是正数的数列an的前n项和为Sn,且2Snaan,数列bn满足b1,2bn1bn.(1) 求数列an,bn的通项公式;(2) 设数列满足,求和c1c2;(3) 是否存在正整数p,q,r(pqr),使得bp,bq,br成等差数列.假设存在,求出所有满足要求的p,q,r;假设不存在,请说明理由规*解答 (1) 2Snaan,2Sn1aan1,得2an1aaan1an,即(an1an)(an1an1)0.因为an是正数数列,所以an1an10,即an1an1,所以an是等差数列,其中公差
8、为1.在2Snaan中,令n1,得a11,所以ann.(2分)由2bn1bn得,所以数列是等比数列,其中首项为,公比为,所以,即bn.(5分)(注:也可累乘求bn的通项)(2) 由(1)得,所以,(7分)所以c1c2.(9分)(3) 假设存在正整数p,q,r(pqr),使得bp,bq,br成等差数列,则bpbr2bq,即.因为bn1bn,所以数列bn从第二项起单调递减当p1时,.假设q2,则,此时无解;假设q3,则,且bn从第二项起递减,故r4,所以p1,q3,r4符合要求;(11分)假设q4,则2,即b12bq,又因为b1br2bq,所以b12bq,矛盾此时无解(12分)当p2时,一定有qp
9、1.假设qp2,则2,即bp2bq,这与bpbr2bq矛盾,所以qp1.此时,则r2rp.令rpm1,则r2m1,所以p2m1m1,q2m1m,mN*.综上得,存在p1,q3,r4或p2m1m1,q2m1m,r2m1(mN*)满足要求(16分)例4、(2019*期末)数列an中,a11,且an13an40,nN*.(1) 求证:an1是等比数列,并求数列an的通项公式;(2) 数列an中是否存在不同的三项按照一定顺序重新排列后,构成等差数列.假设存在,求满足条件的项;假设不存在,说明理由规*解答 (1) 由an13an40得an113(an1),nN*.(2分)其中a11,所以a1120,可得
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数列 中的 探究性 问题 解析
链接地址:https://www.desk33.com/p-13130.html