绿色信贷对商业银行风险的影响.docx
《绿色信贷对商业银行风险的影响.docx》由会员分享,可在线阅读,更多相关《绿色信贷对商业银行风险的影响.docx(22页珍藏版)》请在课桌文档上搜索。
1、绿色信贷对商业银行风险的影响摘要:商业银行支持绿色发展和防范风险是一对不可调和的矛盾吗?本文基于20082019年中国64家商业银行数据构建了绿色信贷政策的准自然实验,利用双重差分模型研究了绿色信贷对商业银行风险的影响。研究发现:商业银行开展绿色信贷可以有效降低商业银行风险,政策效应存在3年的滞后性;绿色信贷政策可以削弱大型国有商业银行和城市商业银行风险,但对非大型国有商业银行和农村商业银行的影响并不明显;增加绿色信贷份额可以增强商业银行流动性及创新性,进而降低商业银行风险。关键词:绿色信贷;商业银行;风险;流动性;多期双重差分检验一、引言与文献综述随着我国经济发展模式的转型,推动绿色信贷发展
2、成为商业银行服务经济、环境可持续发展的重要手段。2007年发布的关于落实环保政策法规防范信贷风险的意见首次提出通过差异化利率、贷款限制等信贷手段对环境与经济发展进行干预和调控。2012年绿色信贷指引进一步明确了绿色信贷的重点投向和支持领域。2016年,中国人民银行等七部委联合印发的关于构建绿色金融体系的指导意见形成了绿色金融发展的体系化建设方案。2021年,中国人民银行通过碳减排支持工具向金融机构提供低成本资金,引导金融机构在自主决策、自担风险的前提下,向碳减排重点领域内的各类企业一视同仁提供碳减排贷款。一系列绿色信贷政策的推出,无疑能够发挥政策示范效应,引导金融机构和企业更充分地认识绿色转型
3、的重要意义,助力碳达峰、碳中和目标的实现。商业银行在践行绿色金融理念中,主要以绿色信贷的方式为从事循环经济、绿色经济生产的环保型企业提供信贷支持,但是,节能环保产业大多为科技创新型企业,支持节能环保项目存在较大信贷风险。那么,对我国银行业而言,绿色信贷对商业银行风险承担会存在怎样的影响?从理论上来讲,绿色信贷使资金配置得到优化:一方面,绿色信贷使资金从落后产业及产能过剩的产业中流出,有助于淘汰过剩产能;另一方面,绿色信贷使资金向绿色环保产业、节能产业调配,有助于推动产业升级,促进经济的可持续发展。但是我国绿色信贷的发展依旧处于不完善的阶段,管理手段单一,法律以及环境征信制度不完善。因此,目前关
4、于绿色信贷对商业银行风险的影响仍未有定论。一部分学者则认为绿色信贷可以对商业银行的财务绩效(张琳等,2019)El,社会声誉(Weber,2005)2产生正向影响,同时顺应了绿色产业蓬勃发展的趋势,有助于优化商业银行的信贷结构,对商业银行综合竞争力具有提升作用(汪炜等,2021)3o但另一部分学者则认为政府的政策会扰乱市场秩序,造成资金配置的失效(MathUVa和KiWeu,2016)4,而绿色企业多处于新兴产业,短期发展具有较大的不确定性,不完善的配套措施会降低商业银行的成本效率(丁宁等,2020)5,使商业银行的风险扩张。同时当前绿色信贷业务投资回报率较低,开展绿色信贷会提升商业银行运营成
5、本,对商业银行经营与发展具有负向效应(李程等,2016)6o由此可见,虽然现有文献对于绿色信贷影响商业银行风险的问题已有一定的研究,但绿色信贷对商业银行风险呈积极影响还是消极影响仍存在较大争议,且存在以下不足之虞:一是研究方法可能不准确。学者们多将绿色信贷指引政策作为关键外生冲击,使用双重差分法测算该政策的政策效应。但需要指出的是,对于商业银行而言,绿色信贷政策执行时间并不相同,使用多期双重差分法才能更为准确地观测到绿色信贷政策的效应。二是尽管有大量的文献讨论了绿色信贷与商业银行风险之间的关系,但大部分文献仅停留在对二者之间直接关系的研究(李苏等,2017;邵传林和闫永生,2020)7,8,而
6、对其中影响机制的研究尚少。但结合影响经营绩效的文献来看,绿色信贷可能并不仅仅直接影响商业银行风险,流动性、创新性这些影响经营绩效的指标都可能间接作用于商业银行风险。本文的边际贡献在于:一是使用多期双重差分模型,不仅探讨了绿色信贷政策的净效应,还对绿色信贷份额的影响做了进一步的研究,不仅回答了是否应继续开展绿色信贷这一问题,还对已实施绿色信贷政策的商业银行后续是否应当扩大绿色信贷份额做出了解释。二是对绿色信贷对商业银行风险的直接影响和中介路径进行了研究,并探讨了绿色信贷对不同性质商业银行风险的影响,为不同性质商业银行开展绿色信贷政策提供了理论证据。二、理论分析和研究假设(一)绿色信贷实施对商业银
7、行风险的影响王艳丽等(2021)9认为,绿色信贷会引发资源错配,导致商业银行风险增加。虽然商业银行通过差异化利率机制或者金融杠杆,可以使资金从“两高一剩”行业流向绿色环保行业,进而引导产业结构创新升级,推动可持续发展,但是,一方面,绿色环保企业作为新兴产业,市场运作模式不成熟,盈利水平往往较低(王遥和潘冬阳,2015)10,商业银行以优惠利率将信贷资金投向绿色项目会造成利息收入的损失,特别是,部分高风险的绿色环保企业会在绿色信贷支持下得以维持,而政策激励下同质性绿色企业的盲目扩张在市场的挤出效应下最终形成银行坏账,导致商业银行经营风险扩大。另一方面,“两高一剩”企业具有成熟的市场运营模式,提升
8、其贷款利率会造成这部分客户减少甚至放弃银行贷款(陈伟光和卢丽红,2011)11,从而产生机会成本。同时,“抽贷”可能会加剧企业资金链断裂,抑制高污染企业技术创新(田超和肖黎明,2021)12,导致企业更加难以偿还借款,商业银行将面临更大损失。同时,绿色信贷政策的配套机制尚不完善也可能导致商业银行无法有效规避风险。一方面,当前绿色信贷仍存在信息不对称、信贷机制不完善、风控机制存在缺漏等问题(宁金辉和史方,2021)13o商业银行的系统没有纳入环境污染及保护信息,在信贷发放过程中,商业银行只能获取部分碎片化的信息,无法对贷款企业的环保水平等做出准确评判。另一方面,绿色环保项目往往回报周期长,投资金
9、额大,商业银行需独自承担资金回流慢的压力,流动性风险提升。加之国内缺乏完善的绿色项目评估监督体系,大大增加了贷前评估成本和事后监督成本(于波等,2021)14,众多污染企业存在“漂绿”行为,虚假的环保宣传导致大量绿色信贷项目质量不高,增加了商业银行环境责任关联风险。然而,产业转型背景下也存在资源优化及风险降压现象。一方面,在信用风险层面,由于环保政策要求及执法力度愈发严格,企业净污成本变高甚至面临污染处罚,企业盈利能力降低,商业银行信贷业务的违约风险增加。相比之下,适用绿色信贷的新企业具有更好的发展前景,且拥有政府绿色项目贴息、担保等政策支持(汪炜等,2021)3o同时,环保行业采用绿色清洁技
10、术,相比“两高一剩”企业,其抵押品的价值更有保障,从而降低了商业银行信贷业务的信用风险。另一方面,在信誉风险层面,绿色贷款业务促使商业银行践行社会责任,创新和发展绿色产品(Relano,2008)15,由此建立的良好声誉能够扩大商业银行的客户群体,提升商业银行自身竞争力,获取更多绿色信贷业务和投资项目。同时,商业银行绿色信贷业务的推广有助于引导公众及市场形成绿色环保理念,吸引更多绿色环保客户,形成良性循环。由此,绿色信贷有助于商业银行践行企业社会责任,促使商业银行积累道德资本,从而以良好的声誉降低商业银行信贷风险。由此,提出两个对立假设:假设la:绿色信贷政策会降低商业银行风险;假设1b:绿色
11、信贷政策会增加商业银行风险。(二)绿色信贷对商业银行风险影响的异质性大型国有商业银行与股份制、民营等非大型国有商业银行因信贷规模、质量、政策的不同而对绿色信贷政策的敏感程度具有异质性(张文中和窦瑞,2020)16o在信贷规模上,大型国有商业银行的规模较大,因此,增加绿色信贷所带来的管理费用等短期成本可以被摊薄;而非大型国有商业银行的信贷规模较小,实施绿色信贷政策所需成本在其经营活动中占比较大(高晓燕,2020)17,更易导致风险增溢。在信贷质量上,大型国有商业银行的绿色信贷业务开展时间较早,品种也较为丰富,相比之下,非大型国有商业银行则较为单一,因此,非大型国有商业银行在实施绿色信贷时提升银行
12、盈利能力的作用也落后于大型国有商业银行。在信贷政策上,大型国有商业银行的绿色信贷政策较为完善,而非大型国有商业银行则不够成熟,在运营效率上存在较大的差距,对信贷政策的理解偏差更容易对非大型国有商业银行发展产生负向影响(刘昊,2021)18o除此之外,农村商业银行与城市商业银行也因信贷制度、业务范围、客户结构的不同而对绿色信贷政策的敏感程度具有异质性。在信贷制度上,城市商业银行绿色信贷相关制度较为规范,发展状况良好,而农村商业银行绿色信贷起步和发展相对较慢,信贷管理与风险控制能力存在一定差距。在业务范围上,农村商业银行主要以服务农村、农业经济为主,而城市商业银行更为灵活多变,业务规模大且多元化程
13、度深。在客户结构上,随着农村金融市场竞争结构的变化,农村商业银行客户流失加速,且优质客户比例低,客户老龄化趋势明显,对政策理解和项目把控能力较弱,一旦贷款形成风险很难化解。由此,提出以下假设:假设2:绿色信贷政策对大型国有商业银行和非大型国有商业银行、城市商业银行和农村商业银行风险的影响存在异质性。三、基准模型、数据与变量说明(一)基准模型为了分析绿色信贷政策对商业银行风险的影响,本文采用双重差分模型,以商业银行的风险承担作为被解释变量,以绿色信贷政策实施的时间虚拟变量作为核心解释变量,具体模型设定如下:InRISKit=0+1PolicyiPostt+Xit+i+Ytit(1)其中,i代表商
14、业银行,t表示时间,InRISKit为商业银行i在t年的风险承担(取对数值)。Policyi为虚拟变量,表示商业银行是否开展绿色信贷,实施绿色信贷的商业银行取1,没有实施绿色信贷的商业银行取0。Postt为虚拟变量,表示是否已经开展绿色信贷,实施绿色信贷的时期取1,其他时期取0。由于不同商业银行实施绿色信贷的时间并不一致,本文使用多期双重差分法进行检验。Xit为与银行风险相关的控制变量,ui代表银行个体固定效应,Yt代表时间固定效应,it为误差项。为进一步研究商业银行绿色信贷份额对其风险承担的影响,文章参照邵传林和闫永生(2019)19的研究,在基准模型的基础上将解释变量替换为政策净效应与绿色
15、信贷份额的交互项,进而验证绿色信贷份额对商业银行风险承担的影响。InRISKit=B0+B1XPolicyiXPosttXGreen+Xit+ui+Yt+it(2)(二)数据来源本文选取的样本为中国64家商业银行20082019年面板数据。通过BankSCOPe数据库及万得数据库,本文获得了100余家国内商业银行的财务数据,由于部分商业银行财务数据缺失严重,剔除了财务数据不完整的样本,保留了64家数据较为完整的商业银行样本。为了降低极端值的影响,本文对所有连续变量在1%和99%分位上进行了缩尾处理。(三)变量解释关于商业银行风险承担的衡量,学界并未形成一致的标准,代理变量主要有预期违约率、存贷
16、比、资本充足率、不良贷款率、Z值等。本文借鉴邵传林和闫永生(2020)19,采用Z值衡量商业银行风险承担,具体计算公式如下:RISKit=ROAitCARitROAit(3)其中,ROA表示商业银行的总资产收益率;CAR表示商业银行的资本充足率,8ROA表示总资产收益率的标准差,即资本收益率与资本资产比之和除以资产收益率的标准差。因为Z值有尖峰厚尾的性质,取对数进行回归。Z值越大,银行系统越稳定,破产概率越小,银行风险越小。此外,使用资本充足率、不良贷款率进行稳健性检验。关于核心解释变量绿色信贷虚拟变量的选择,苏冬蔚和连莉莉(2018)20在研究绿色信贷对企业投融资行为的影响时,将2012年绿
17、色信贷指引的正式实施作为绿色信贷政策施行的重要时间节点。在此基础上,考虑到2012年后还有其他不同的商业银行逐渐开展绿色信贷业务,本文通过手工查阅各家商业银行社会责任报告中绿色信贷余额的披露时间点,确定各家商业银行开展绿色信贷的时间,具体时间如表1所示。如果某家商业银行在当期开始披露或已经披露了绿色信贷余额,则赋值为1,否则为0。另外,通过手工查阅各家商业银行社会责任报告中的绿色信贷余额,计算得到绿色信贷占贷款余额的比例,作为核心解释变量的另一个衡量指标一一绿色信贷份额(green)。为控制其他因素对商业银行风险的影响,参考已有研究,本文选取了以下控制变量:在商业银行自身风险控制方面,本文选取
18、了商业银行规模(size),盈利能力(roa)、收入结构(NIIR)作为控制变量。其中,以总资产余额的自然对数代表商业银行规模,以净利润与总资产的比值衡量盈利能力,以非利息收入与总营业收入的比值衡量收入结构。在宏观经济方面,本文参照丁宁等(2020)5的研究,选取了GDP增长率(gdpgrowth)、M2增长率(M2growth)以及国内物价水平(CPi)作为控制变量,各变量描述性统计见表2。四、实证结果(一)基准回归结果基准模型的回归结果见表3。第(1)列和第(3)列分别表示仅控制个体固定效应和时间固定效应时各变量对商业银行风险的影响,第(2)列和第(4)列在此基础上加入了各控制变量。结果显
19、示,无论是否加入控制变量,PolicyPost的系数始终为正且显著。这说明,绿色信贷的净政策效应是使Z值增加,由于Z值越小,风险越大,即绿色信贷的政策效应是使商业银行的风险降低。第(3)列和第(4)列的结果显示,无论是否加入控制变量,绿色信贷份额的回归系数显著为正。可见,假设Ia成立,即绿色信贷在发挥促进绿色发展作用的同时,还可以降低商业银行风险承担。(二)多期平行趋势检验双重差分模型需要满足平行趋势检验假设,即在政策时间点之前实施绿色信贷的商业银行和未实施绿色信贷的商业银行变化趋势应保持一致。正如前文所强调的,不同商业银行开展绿色信贷的时间不同,因而不能将某一年作为临界点设置虚拟变量。本文参
20、考BeCk等(2010)21的研究,为各商业银行设定实施绿色信贷的相对时间值,从而构建多期平行趋势检验,具体检验公式为:InRISKit=+lBefore3it+2Before2it+B3Beforeli,t4Currentit+5Afterlit+6After2it+7After3i,t+B8After4it+09After5it+10After6it+BHAfter7it+12After8it+Xit+iYt+it(4)其中,Before、Current以及以fter为商业银行施行绿色信贷的前n年、当年以及后n年的观测值。由于本文样本期为20082019年,而商业银行在2012年之后施行绿
21、色信贷政策,因此,部分商业银行没有多于-4的样本量。本文参考白俊红等(2022)22解决多重共线性问题的方法,将其他商业银行-4期之前的时间归并至第-4期。由此,本文以-4期为基点,分析政策发生前三年情况,以观测是否符合平行趋势检验。同样,由于观测值的时间截至2019年,本文主要分析商业银行实施绿色信贷后7年的勤态效应。结果如图1所示,商业银行施行绿色信贷政策之前,时间虚拟变量的系数均不显著,说明处理组商业银行与控制组商业银行在政策发生之前的风险无显著差异,符合平行趋势检验假设。此外,在政策发生后,商业银行风险并不会立即降低,在实施绿色信贷3年后,绿色信贷对商业银行Z值的影响显著为正并不断提升
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 绿色 信贷 商业银行 风险 影响
链接地址:https://www.desk33.com/p-1335535.html