压轴题08计数原理、二项式定理、概率统计压轴题6题型汇总 (教师版).docx
《压轴题08计数原理、二项式定理、概率统计压轴题6题型汇总 (教师版).docx》由会员分享,可在线阅读,更多相关《压轴题08计数原理、二项式定理、概率统计压轴题6题型汇总 (教师版).docx(46页珍藏版)》请在课桌文档上搜索。
1、压轴题06计数原理、二项式定理、概率统计压轴题六大题型汇总压轴题解读命题预测本专题考查类型主要涉及点为计数原理、二项式定理、概率统计相关的知识点。预计2024年后命题会继续在上述几个方面进行。高频考法题型Ol概率与数列结合问题题型02二项式定理相关问题题型03排列组合新定义问题题型04概率统计与导数结合问题题型05进制问题题型06条件概率全概率问题高分必抢题型01概率与数列结合问题递推数列与概率知识的交汇问题,解决该类问题应该注意的事项有:(1)做好互斥事件的划分,正确进行独立事件概率的计算;(2)借助待定系数方法建立不同事件概率间的递推关系,即构建递推数列;(3)正确运用数列求通项公式或求和
2、的方法解决问题.1.(21-22高二下黑龙江双鸭山期中)足球运动被誉为“世界第一运动”.深受青少年的喜爱.为推广足球运动,某学校成立了足球社团,社团中的甲、乙、丙三名成员将进行传球训练,从甲开始随机地球传给其他两人中的任意一人,接球者再随机地将球传给其他两人中的任意一人,如此不停地传下去,且假定每次传球都能被接到.记开始传球的人为第1次触球者,第九次触球者是甲的概率为匕,即Pl=1.则下列说法正确的个数是()(I)P2=O;(2)P3=;(3)=-Pn-1+i;(4)P9P10.A.1个B.2个C.3个D.4个【答案】C【分析】(1)与(2)能直接进行求解;(3)分析出要想第几次触球者是甲,则
3、第(n-1)次触球的不能是甲,且第5-1)次触球的人,有T的概率将球传给甲,从而求出递推公式;(4)再第(3)问的基础上求出通项公式,计算出Pg,比较出Ao-P9=-3p9+=-WP10,(4)错误.说法正确的个数是3个.故选:C【点睛】概率与数列结合的题目,要能分析出递推关系,通过递推关系求出通项公式,这是解题的关键.2. (23-24高三下山东荷泽开学考试)国际象棋是国际通行的智力竞技运动.国际象棋使用88格黑白方格相间棋盘,骨牌为每格与棋盘的方格大小相同的1X2格灰色方格.若某种黑白相间棋盘与骨牌满足以下三点:每块骨牌覆盖棋盘的相邻两格;棋盘上每一格都被骨牌覆盖;没有两块骨牌覆盖同一格,
4、则称骨牌构成了棋盘的一种完全覆盖.显然,我们能够举例说明88格黑白方格相间棋盘能被骨牌完全覆盖.国际象棋棋盘(1)证明:切掉8X8格黑白方格相间棋盘的对角两格,余下棋盘不能被骨牌完全覆盖;(2)请你切掉8X8格的黑白方格相间棋盘的任意两个异色方格,然后画出余下棋盘的一种骨牌完全覆盖方式,并证明:无论切掉的是哪两个异色方格,余下棋盘都能被骨牌完全覆盖;记mXti格黑白方格相间棋盘的骨牌完全覆盖方式数为RTn,n),数列F(2,n)的前n项和为Sn,证明:Sn=尸(2,n+2)-2.【答案】Q)证明见解析(2)答案见解析(3)证明见解析【分析】(1)根据切掉88格黑白方格相间棋盘特征,即可得证;(
5、2)易得88格黑白方格相间棋盘能够被红线分割为黑白方格依次相邻且首尾相接的“方格条,再切掉其中两个黑白方格,即可得证;(3)易得完全覆盖方式数的递推公式为F(2,n+2)=F(2,n+1)+尸(2,n)(nN*),由累加法即可得证.【详解】(1)由于每块骨牌覆盖的都是相邻的两个异色方格,故棋盘的黑白方格数目相同是其能被骨牌完全覆盖的必要条件,但切掉8X8格黑白方格相间棋盘的对角两格后,要么黑色方格比白色方格多两个,要么白色方格比黑色方格多两个,故余下棋盘不能被骨牌完全覆盖;(2)切掉两个异色方格并作完全覆盖示例如图1;如图2,8X8格黑白方格相间棋盘能够被红线分割为黑白方格依次相邻且首尾相接的
6、“方格条无论切掉其中哪两个黑白方格,都会将方格条”拆成一至两个“短方格条”,且每个短方格条中黑白方格的数目是相同的,都能够被骨牌完全覆盖,故余下棋盘能一定被骨牌完全覆盖;)周岛Ba早B-B-B-(3)如图3,可知完全覆盖方式数的递推公式为F(2fn+2)=F(2,n+1)+F(2,n)(nN*)其中F(2,l)=1,F(2,2)=2.从而F(2,3)=F(2,2)+尸(2,1),F(2,4)=F(2f3)+F(2,2),.,F(2,n+2)=F(2,n1)+F(2fn),累加得Sn+23=Sn+11+5n,移项得%=F(2,n+2)-2.【点睛】关键点点睛:第三问的关键是得到递推公式F(2,n
7、+2)=F(2,n+1)+F(2,n)(nN*),再利用累加法计算.3. (2024江苏常州模拟预测)某游戏设置了两套规则,规则A:抛掷一颗骰子n次,若n次结果向上的点数之和大于2,时,继续下一次抛掷,否则停止抛掷;规则B:抛掷一颗骰子一次,结果向上的点数大于2时,继续下一次抛掷,否则停止抛掷.(1)若执行规则A,求抛掷次数恰为1次的概率;(2)若执行规则B,证明:抛掷次数的数学期望不大于3.【答案】:(2)证明见详解【分析】(1)先求出抛掷一颗骰子1次向上的点数构成的基本事件总数,再计算事件”向上的点数不大于2的基本事件数,由古典概型的计算公式计算即可;(2)先写出随机变量抛掷次数X的所有可
8、能的结果,写出它的分布列,计算其数学期望,计算过程用到了错位相减法.【详解】(1)若执行规则A,抛掷次数恰为1次,抛掷一颗骰子1次结果向上的点数”构成的基本事件为:1,2,3,4,5,6,共6个基本事件;事件”向上的点数不大于2包含的基本事件为:1,2,包含2个基本事件;由古典概型的计算公式得,若执行规则A,抛掷次数恰为1次的概率为:P=:=:.(2)若执行规则B,抛掷次数X的所有可能取值为1,2,3,n;显然抛掷一颗骰子1次结果向上的点数不大于2的概率为1大于2的概率为I,P(X=I)=IP(X=2)号x1P(X=3)=(,x,、2n11P(=n)=(5)5所以E(X)=:+2x:x:+3X
9、G)ZX/+n(yF=ll+2+3Q)2+n()n1,设S=1+2W+3X2+?IGyT,豹号+2(y+.+Mgn,-=1+Q)2+(If1-n(三)nr=ITy1.呜n=3_(3+n)G)n5,即4=黑Pn+念,即+1)匕-(2九-I)PnT=I,又(2+DP1=3X=1,即数列(2n+1)6为以1为公差,以1为首项的等差数列,即(2几l)Pn=H,故%=肃P5. (2023河南开封一模)某市每年上半年都会举办“清明文化节,下半年都会举办“菊花文化节,吸引着众多海内外游客.为了更好地配置“文化节旅游相关资源,2023年该市旅游管理部门对初次参加“菊花文化节”的游客进行了问卷调杳据统计,有I的
10、人计划只参加“菊花文化节其他人还想参加2024年的清明文化节,只参加菊花文化节”的游客记1分,两个文化节都参加的游客记2分.假设每位初次参加“菊花文化节的游客计划是否来年参加清明文化节相互独立,将频率视为概率.(1)从2023年初次参加“菊花文化节的游客中随机抽取三人,求三人合计得分的数学期望;(2)2024年的清明文化节拟定于4月4日至4月19日举行,为了吸引游客再次到访,该市计划免费向到访的游客提供单车自由行和观光电车行两种出行服务.已知游客甲每天的出行将会在该市提供的这两种出行服务中选择,甲第一天选择单车自由行”的概率为久若前一天选择单车自由行,后一天继续选择单车自由行”的概率为若前一天
11、选择观光电车行,后一天继续选择观光电车行”的概率为:,如此往复.(I)求甲第二天选择单车自由行”的概率;(ii)求甲第几(n=1,2,,16)天选择单车自由行”的概率匕,并帮甲确定在2024年清明文化节”的16天中选择单车自由行”的概率大于观光电车行”的概率的天数.【答案】4(i)卜(ii)-+my(”=1,2,116);2天【分析】(1)由合计得分可能的取值,计算相应的概率,再由公式计算数学期望即可;(2)(I)利用互斥事件的加法公式和相互独立事件概率乘法公式求概率.;(ii)由题意,求分与Pn-I的关系,通过构造等比数列,求出&,再由匕:求出对应的n.【详解】(1)由题意,每位游客得1分的
12、概率为I,得2分的概率为;,随机抽取三人,用随机变量X表示三人合计得分,则X可能的取值为3,4,5,6,P(X=3)=C,P(X=4)=C;x(/xP(X=5)=CXGyXP(X=6)=Gy=V则E(X)=3X盘+4xg+5xg+6x/=4.所以三人合计得分的数学期望为4.(2)第一天选择单车自由行”的概率为则第一天选择观光电车行”的概率为I若前一天选择单车自由行,后一天继续选择单车自由行”的概率为1.若前一天选择观光电车行,后一天继续选择观光电车行的概率为1则后一天选择单车自由行”的概率为:,(i)甲第二天选择单车自由行的概率P=+;=;54533(ii)甲第九(n=1,2,16)天选择单车
13、自由行”的概率匕,有=,则Pn=Pn-I+久1-Pn)=-11n-l+(11=2,3,16),11=-(p-11),又P1.=患,.幡=-(w=23,16),数列N-同是以含为首项,以为-总公比的等比数列,p=+三(-)n1S=1,2,16).由题意知,需&1一8,即8+5()n即(一卷)”1蒜=5(n=l,2,-,16),显然n必为奇数,偶数不成立,当r=135,15时,有x热=熬可,Tl=I时,1想成立;71=3时,图2喑磊4成立;/54_625_625,625.5,sn-l5_n=5时,12-144X144207367000S6,则M=5时(石)&不成立,又因为(V)Z单调递减,所以5时
14、,G)高不成立.综上,16天中选择单车自由行”的概率大于观光电车行”的概率的天数只有2天.【点睛】关键点睛:本题第2小问的解决关键是利用全概率公式得到&=-5匕-1+从而利用数列的相关知识求得4,从而得解.题型02二项式定理相关问JS6 .(2018上海一模)已知(1+2%)6展开式的二项式系数的最大值为Q,系数的最大值为匕,则5.【答案】12【分析】由(+b)rl的二项展开式的通项T,+1=GanTb1.可知(1+2x)6展开式的二项式系数为Cg(r=0,l,6),当r=3时,二项式系数的最大值为Q,(1+2乃6展开式的系数为d2/&=01,.,6),当满足;Crr-r-X时,系数的最大值为
15、匕,求解即可.【详解】由题意可知(1+2x)6展开式的二项式系数为(r=0,1,6),当厂=3时,取得最大值Q=Cl=20(1+2x)6展开式的系数为展2(r=0,1,6),(rryr/-r+lnr+l第r;-.r-l时,系数最大.C64C61.6!2r7r+1r!(6-r)!一(r+l)!6-(r+l)l一2r2r1r!(6-r)!(r-1)!6-(r1)!f三Pr2(7解若jTIr-7-r又r=0,1,6r=4时,系数的最大值为b=Cg24=240则故答案为:12【点睛】本题考直二项式定理,求二项式系数最大值时,列出不等式组:是解决本题的关键.属于一道较难的题.7 .(2024浙江模拟预测
16、)已知(OX-1)2(2%-I)3=0+a1x+a2x2+a3x3+a4x4+a5xs.若Qo+1+。2+04+。5=0,则=.【答案】38【分析】借助赋值法可得,结合二项式定理计算即可得解.【详解】令X=1,则有(Q-1)2=。0+%+。2+。3+。4+。5=0,即Q=1,即有(X-1)2(2%-1)3,则为=C2C3(-1)2+(-C2)22C3-(-1)+123=38.故答案为:38.8.(多选)(2024全国模拟预测)已知TnEN,m2,a1ta2,ame0,1,2,9,记M=IOm+110i-.当的,2,,m,中含N,km)个6时,所有M不同值的个数记为G(k).下列说法正确的有()
17、A.若?n=2,则G(O)=81B.若m=19,则G(八)G(k+l)(kEN,k18)C.对于任意奇数m,G(I)+G(3)+G(m)G(k+1)时,Cj9919-fcCf/918-fc,解得1k18,B错误;GW=C*9m-fc,设G(I)+6(3)+G(m)=x,G(O)+G(2)+G(m-1)=y,则X+y=(1+9)m=10m,y-x=(9-l)m=8m,于是X=W%1求”(78),(375);(2)若正整数x,y互质,证明:ju(xy)=(x)(y);若nlz(n)=1记九的所有真因数除了1和n以外的因数脓次为由,生,/n证明社(的)+(。2)+(m)=-2.【答案】4(78)=-
18、IM375)=0(2)证明见解析;(3)证明见解析;【分析】(1)分别写出78,375的所有质因数,根据其个数即可计算出结果;(2)对x,y的取值是否为1进行分类讨论,对(xy),a)(y)的取值进行分别计算即可求得结论;(3)利用定义由组合数定义以及二项式定理可得出证明.【详解】(1)因为78=2313z易知k=3,p=2tp2=3,p3=13,r1=l,r2=l,r3=1,所以双78)=(-1)3=-1;又375=3X53,因为5的指数31,所以(375)=O;(2)若X=1或y=1,因为=1,所以(孙)=M(y):若y1,且存在质数p,使得X或y的质因数分解中包含p(r1),则孙的质因数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 压轴题08计数原理、二项式定理、概率统计压轴题6题型汇总 教师版 压轴 08 计数 原理 二项式 定理 概率 统计 题型 汇总 教师版
链接地址:https://www.desk33.com/p-1364457.html