我国氢动力船舶创新发展研究.docx
《我国氢动力船舶创新发展研究.docx》由会员分享,可在线阅读,更多相关《我国氢动力船舶创新发展研究.docx(25页珍藏版)》请在课桌文档上搜索。
1、一、前言当前,航运业迅猛发展,柴油机动力船舶伴生的能耗与环境问题日益显现,如2020年我国航运业的CO2排放量达到1.2108t,约占交通运输领域排放量的12.6%o水路交通载运工具绿色化是水运行业的技术前沿和未来趋势,也是航运业实现碳达峰、碳中和(双碳)目标的重要举措,发展绿色船舶对促进我国船舶工业转型升级、实施交通强国战略具有重要意义。在近期,天然气、甲醇等低碳燃料,蓄电池技术是降低船舶C02排放量的过渡方案;在中长期,氢、氨等零碳燃料技术将是水路交通载运工具实现零排放的重要途径。氢能作为清洁能源,通过燃料电池方式实现高效发电且不排放C02,有望在水路交通运输行业的碳减排过程中发挥积极作用
2、。根据国际能源署发布的中国能源体系碳中和路线图,航运业的碳减排主要取决于氢、氨等新型低碳技术和燃料的开发及商业化;在承诺目标情景中,2060年基于燃料电池的氢能应用模式将满足水路交通运输领域约10%的能源需求,兼顾能源高效利用、零排放、船舶舒适度提升,适应绿色船舶市场需求且应用前景广阔。发达国家积极提出氢能源战略并开展氢能相关产业布局,掌握了氢能和燃料电池相关的核心技术,开展了包括氢动力船舶在内的多项示范项目,正在研制新型氢动力船舶。在我国,应对双碳目标牵引,加速布局氢能的交通领域应用;部分企业和机构基于国产化氢能和燃料电池技术进步而相继启动了氢动力船舶研制,但整体处于前期探索阶段;后续需要细
3、化和完善我国氢能领域的顶层设计,为氢动力船舶发展提供科学指引。针对于此,本文在梳理氢动力船舶发展现状并研判相关产业布局态势的基础上,重点开展技术经济可行性与产业链关键环节分析,探讨提出领域目标任务、建设路径,以期为我国氢动力船舶快速优质发展研究提供参考。二、氢动力船舶发展现状与产业布局研判(一)氢动力船舶发展现状1 .氢动力船舶氢及氢基燃料是航运行业碳减排及脱碳的良好解决方案,其应用范围将随着燃料应用技术的成熟、配套设施的完善而逐步扩大。氢动力船舶通常用于湖泊、内河、近海等场景,以客船、渡船、内河货船、拖轮等类型为主;海上工程船、海上滚装船、超级游艇等大型氢动力船舶研制是当前的国际趋势,潜艇采
4、用氢燃料电池动力系统同样具有良好前景。在现阶段,氢燃料电池适用于多种内河船舶,可作为小型船舶的主动力,也可作为大型船舶的辅助动力;以质子交换膜燃料电池(PEMFC)类型为主,功率等级相比传统柴油机动力有较大差距。发达国家己成功研制不同类型氢动力船舶并取得示范应用效果,如德国Alsterwasser游船、日本燃料电池渔船、法国“EnergyObserverw游艇、美国Water-Go-RouncT渡船、韩国GoldGreenHygen氢动力旅游船等;后续将深化研究与应用,如挪威UlsteinSX190”海上工程船、Topeka滚装船,意大利“ZEUS试验船等(见图1)。除燃料电池外,氢内燃机也是
5、船舶应用氢能的重要途径,如比利时、日本研制的氢内燃机拖船“Hydrotug、渡船HydroBingo。日本企业(如川崎重工业株式会社、洋马株式会社等)积极研制氢内燃机,正在开发中速四冲程发动机、中高速四冲程发动机、低速二冲程发动机。IBM-AI*tCTwasicr-内河国燃科电於小电油*N214SM2-4kWPFAIK-MHlt;35MPZOkWPEMH;35MPJACm.电解*MU*t;Iuf均为IIkmh,-用、M健Ia波浪能D为船2IlOkWPENiFC,金属化物储X;以9Jkm卜以FM抵德在水卜浦仑K2Sm,2.4三45O1.MHMIUb.金。速度可建37Krn.Yi360kWPtMK
6、HOOkWhVjUIi2SMK*KaICftIUd;代客M%MhEfitt攥或公动力有hl:程般“l7bwSXlW(2022)2MWPEMFC55MW壁发电机.再抵回住不,!放松式卜背巧:领4力修-Afc41g1.o国外的70MPa高压储氢技术基本成熟并实现商业化,如丰田Mirai氢燃料电池汽车即采用70MPa储氢瓶。我国的35MPa高压储氢瓶技术标准成熟,国产氢燃料电池汽车较多采用;正在研发70MPa高压气瓶,己接近商业应用阶段。因此,我国氢动力船舶,如绿色珠江号内河货船先期采用了35MPa高压气瓶储氢方式,待技术条件成熟后再转向更高规格。液氢的密度为70.8g1.,在储存密度上较高压储氢有
7、明显优势;随着氢能产业的快速发展,低温液态储氢将逐步扩大民用范围,有望成为未来的主流储氢方式。考虑到现有高压储氢技术的储存密度较低,无法满足未来船舶续航力的要求,船舶储氢将朝着能量密度更高的方向发展,如T。Peka滚装船、AQUA概念游艇计划采用低温液态储氢方式。金属氢化物储氢方式具有储氢体积密度大、压力低、安全性高等优点,在潜艇上具有良好应用前景,推广应用过程需着力解决成本、吸脱氢温度、反应速率等问题。理论上氨的储氢密度约为17.6%,液氨的体积储氢密度是液氢的1.5倍,加之氨的液化、储存、运输技术成熟,使得以氨为载体的储氢方式成为极具潜力的大容量储氢解决方案。氨的裂化分解是以氨为载体的储氢
8、系统需要解决的关键技术问题,开发低压、低温、高活性、低成本的催化剂是后续研究重点。甲醇具有较高的储氢密度且自身含氢量达12.5%,可作为绿氢的载体来实现高效储存和运输,当距离大于200km时较直接运氢具有经济优势。考虑到甲醇制氢会产生CO,需配备氢气纯化装置以避免PEMFC催化剂中毒。(四)快速安全加氢技术现有的氢动力船舶储氢方式多样,相应的加氢方式和耗时不尽相同。在“Alsterwasser游船示范项目中,林德集团在码头建立加氢站为该船提供稳定氢源,船上最多可存储50kg氢气,单次加氢过程耗时约为12min;德国212A型潜艇采用基于金属氢化物储氢方式,完成80%、IO0%加氢量分别耗时IO
9、h、25ho鉴于陆上车用高压气态储氢及加氢技术相对成熟,在氢动力船舶发展初期采用车用方案是可行的发展模式。与车用加氢相比,船舶加氢具有加注量大,持续时间长的特点,加注设备应采用更加可靠的加注连接方式,同时应具有船岸之间紧急切断的联动功能以满足紧急脱开需要。船舶在码头进行燃料加注时一般不允许船舶断电,因而既保证加氢时燃料电池系统正常工作(供电)以及装卸货等同步操作(SIMOPs)的需要,又保障氢燃料加注操作的安全性,是亟需解决的问题。(五)船舶大功率燃料电池技术船用燃料电池技术表现为“小功率一大功率的发展趋势。燃料电池主要分为以PEMFC为代表的低温燃料电池,以熔融碳酸盐(MCFC)和固体氧化物
10、(SOFC)为代表的高温燃料电池:前者技术成熟,正在进行产业化、规模化发展,力求实现价格更低、寿命更长、功率更高;后者因其功率高、效率高、氢气纯度要求低等技术优势,更适合船舶应用,也是未来大型船舶的发展方向。船舶功率需求与船型、操作工况相关,不同船型的需求功率如表1所示。PEMFC系统可作为小型船舶的主动力或大型船舶的辅助动力。在现有的氢动力船舶示范项目中,PEMFC系统输出功率基本为百千瓦级。为了拓宽氢动力船舶的适用场景,未来PEMFC系统的输出功率应提高至兆瓦级,这是船舶燃料电池亟需攻克的关键技术。表1船舶需求功率情况(单位:kW)类型电力推进器慢快小型游艇和船舶1-100民用船舶1002
11、000500-100050000潜艇和海军舰艇5002000ooo-2oo(三gr(六)船舶氢内燃机技术氢气燃烧火焰传播速度快、放热集中,因而氢内燃机相对传统内燃机具有更高的热效率。普通内燃机热效率约为30%40%,而德国企业研制的氢内燃机验证机热效率最高达到42%,我国正在研发的氢内燃机热效率有望达到44%。也要注意到,氢内燃机虽然具有输出功率高、热效率高、节能环保的优点,但存在爆燃、早燃、回火等技术难题,也会产生NO,因而提升动力系统性能、降低No排放是后续氢内燃机研究亟待攻关的方面。氢内燃机相比PEMFC系统具有输出功率优势,待攻克相关技术难题后,将在船舶领域获得广阔应用。2017年,比
12、利时海事集团推出了世界首制柴氢双燃料客船,搭载的BehydrO发动机输出功率为100O2670kW0目前我国的氢内燃机技术集中在汽车领域而尚未开展船舶应用研究,相较国际先进水平还存在较大差距。(七)船舶多能源协同控制技术常规船舶采用船舶柴油机并以燃用轻/重柴油为主,部分采用柴油发电机的电力推进系统用能形式,能源结构相对单一。船舶供能形式的多样化是未来发展趋势,如EnergyObserverw游艇搭载了太阳能光伏发电系统、风力发电系统、锂电池系统、海水淡化系统、PEM电解水制氢系统、PEMFC系统等;在日本邮轮超级环保船(NYKSUPerECO-ShiP)设计方案中,动力系统将采用1.NG燃料电
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 我国 动力 船舶 创新 发展 研究
![提示](https://www.desk33.com/images/bang_tan.gif)
链接地址:https://www.desk33.com/p-1407132.html