我国电力碳达峰、碳中和路径研究.docx
《我国电力碳达峰、碳中和路径研究.docx》由会员分享,可在线阅读,更多相关《我国电力碳达峰、碳中和路径研究.docx(23页珍藏版)》请在课桌文档上搜索。
1、一、前言进入21世纪以来,与全球气候变化密切相关的极端天气、自然灾害频发,世界各国纷纷制定碳中性、碳中和气候目标,加速能源清洁低碳转型、积极应对气候变化成为全球共同性议题。我国积极宣示并推动碳达峰、碳中和目标的实施,既是践行人类命运共同体的重大实践,也体现了推动世界绿色低碳转型的决心与担当。在我国,能源活动是CO?的主要排放源,相应排放量约占全社会CO2排放量的87%、全部温室气体排放量的73%;其中电力部门是重要的碳排放部门(约占能源碳排放的40%),相应排放量约为4x1(?t。未来,通过电能替代煤炭、石油、天然气等化石能源的直接使用,提高终端能源消费的电气化水平,可显著减少终端用能部门的直
2、接碳排放。电力是能源转型的中心环节、碳减排的关键领域,电力部门将承担更大的减排责任,应加快构建以新能源为主体的新型电力系统,推动能源电力低碳转型发展,为实现我国碳中和目标作出重要贡献。能源电力低碳转型对于实现碳达峰、碳中和目标至关重要。目前国内外研究机构在世界能源低碳转型路径研究方面取得了丰富成果,如国际能源署(IEA)、国际可再生能源署(IRENA)等机构按年度发布世界能源发展展望报告,开发了一批综合能源经济模型(代表性的有MARKE1.-MACRo模型、TlMES模型、C-REM模型),为碳中和目标下全社会、各行业脱碳转型路径研究提供了方向引导与工具支撑;国内高校、科研院所通过设置政策情景
3、、强化减排情景、2和1.5情景等假设,对碳达峰、碳中和目标下我国能源电力转型路径开展了多情景分析并获得诸多研究成果。需要注意到,相较主要发达国家在自然达峰后的漫长减排路径,我国的碳排放峰值、平台期、转型路径将完全不同,电力低碳转型必然面临包括规划、政策、技术、产业、经济性在内的全方位挑战。统筹协调电力行业与全社会其他行业的减排责任和进程,考虑新型储能、CCUS(碳捕集、利用与封存)、氢能等关键新技术对电力低碳转型路径的影响,合理确定煤电发展定位、科学发展利用新能源、破解电力平衡挑战等重大问题,都可归纳为在多重不确定的内外部环境下多目标权衡与统筹优化事件,需要兼顾安全、经济、清洁等多个方向开展系
4、统深入的研究。针对于此,本文以我国电力行业未来承担的碳减排实物量为主约束,根据经济发展、能源电力需求、资源环境等关键边界条件,合理计及约束差异,构建深度低碳、零碳、负碳3类电力低碳转型情景;对比分析不同情景下电源结构布局、电力碳减排、电力供应成本等优化结果,辨识路径实施亟待解决的关键问题,以期为碳达峰、碳中和目标下电力转型及中长期发展研究提供基础参考。二、碳达峰、碳中和目标下电力转型路径的多情景分析方法(一)研究模型与方法本文采用定量和定性相结合的方式开展具体研究。评估电力系统碳预算。以碳达峰、碳中和目标实现为约束,从经济社会发展的全局出发,综合考虑国际碳减排现状、不同行业发展趋势和碳减排难度
5、,研判20202060年我国电力碳排放总预算。设置转型情景和关键边界条件。考虑电力系统碳减排责任、关键举措实施力度的差异性,结合国民经济增长、能源电力需求、宏观政策目标、能源资源潜力、技术经济性等关键边界条件及其参数,设计电力系统深度低碳、零碳、负碳3类转型发展情景。电力碳减排转型路径优化(见图1)o针对设计的3类发展情景,采用碳达峰、碳中和电力规划软件包GESP-V来优化获得电源结构转型路径、电力系统碳减排路径、电力供应成本等。GESP-V由国网能源研究院有限公司自主开发,以包含新能源在内的多区域电力规划模型为核心,可反映电力电量平衡、碳排放约束、碳捕集改造、电制氢等减碳与新能源利用等关键技
6、术的影响;集成电源规划、生产模拟、政策分析等系统工具,可针对各类情景下的能源电力发展路径、电源发展规模布局、电力流向规模、传统电源CCUS改造后的捕集规模、电力碳减排路径等开展优化分析。关键问题分析与应对策略建议(见图2)o基于各发展情景下路径优化结果的对比,探讨煤电发展定位、新能源发展利用、清洁能源多元化供应、电力平衡等关键问题,研究提出低碳转型所需的技术、经济、产业、政策等建议。输入现状和规划系线现Ml混合型数优化(MlP)目标画Bt:规肿B内电力供应总成本低发电和输电联合优生B1展和生产模楸壁合优化输出电力发展情*电与规模和布局片区摘电规划电力3m本抵此的用力器黑器.号宇IS馈鬻电加波J
7、r*k仪上一1.EJV图4零碳情景F2020-2060年电源装机结构O202020252030203520402045205020552060时间年修电;气电;,核电;生物质发电;常规水电;风电;太阳能发电642086IlllaMXn三密兴图5零碳情景F2020-2060年发电量结构(二)电力系统碳减排路径电力碳减排路径主要分为碳达峰、深度低碳、碳中和3个阶段,各阶段的电力碳减排演化路径特征表述如下。在碳达峰阶段,对于零碳情景,2028年前后电力系统碳排放达峰,峰值约为4.4l091COZ(不含供热碳排放),约占能源燃烧CO2峰值的49%,其中煤电排放约4x10”CO2、气电排放约4x108t
8、COz。电力行业要承担其他行业电气化带来的碳排放转移,同时碳达峰阶段的新增电力需求难以完全由非化石能源发电满足,两方面因素共同导致电力碳排放达峰可能滞后于其他行业,但整体上有利于全社会碳排放的提前达峰。对于负碳情景,电力系统将承担更多的碳减排责任,预计2025年前后碳排放达峰,较零碳低峰值情景提前23a;相应碳排放峰值降低至4.1x109tCOz。对于深度低碳情景,预计十五五时期末段电力碳排放达峰,相应峰值约提高至4.7x109tCOz。在深度低碳阶段,电力排放达峰后进入短暂平台期(23a),之后碳减排速度整体呈先慢后快的下降趋势。随着新能源、储能技术经济性进一步提高、新一代CCUS技术商业化
9、应用规模扩大,电力系统将实现深度低碳。在零碳情景下,2050年电力碳排放降低到IXIO9tCOz以下。在碳中和阶段,2060年电力系统实现零碳(见图6)。在零碳情景下,煤电、气电碳排放分别为5.3x108tC02、2.5108tCO2(不计CCUS碳捕集量),煤电、气电、生物质发电的CCUS碳捕集量分别为3.2x108tC02、1.2108tC023.4108t2o保*-,电“9樗放;生物旗“故(CCVSMIt);AI(计入CcUS)图6零碳情景N2020-2060年电力碳排放和吸收图(三)电力供应成本分析根据不同情景下电源装机结构、发电量结构、火电机组CCUS改造情况,统环境成本结构(见图7
10、)。不同碳减排路径对低碳技术、非化石能源需求存在差异,电力转型成本与承担的减排量、实施的减排力度呈明显的正相关关系。在零碳情景下,按4%贴现率考虑,2020-2060年全规划周期电力供应成本贴现到2020年约为60万亿元,其中新增投资在电力系统规划费用组成中的占比最大(约为42%)。相对于零碳情景,负碳情景下的新能源并网比例迅速提高,对灵活资源、输配电网、碳捕捉利用设备的投入也将大幅增加,电力供应成本提高约17%o深度低碳情景下的电力供应成本最低,较零碳情景降低约12%。O零破情景深度低碳情景负碳情景投资成本;18定运行成本;变动运行成本;:燃料成本;排放成本706050403020黑0勺、4
11、蟹技察图7不同情景卜的电力供应成本及构成零碳情景下的不同碳减排路径对比表明(见图8):在相同电力碳预算的情景下,先慢后快的上凸曲线减排路径,其技术经济评价相对更好;若电力碳减排路径保持匀速的下斜直线或先快后慢的下凹曲线趋势,将对新能源规模、脱碳技术应用提出更高要求,预计2020-2060年电力成本需提高4%8%。因此,碳达峰、碳中和路径的制定,应统筹考虑经济社会发展规律、关键技术发展成熟度等客观因素,合理分配不同历史时期的碳减排责任,避免抢跑式运动式减碳,力求符合实际、切实可行。202020252030203S20402045205020552060时间年零碳情景(上凸曲线);零碳情景(斜卤纯
12、);零碳情景(下凹曲线)50403020图8零碳情景卜.不同碳减排路径对比图测算数据表明,电力供应成本近中期波动上升,中远期先进入平台期然后逐步下降。在零碳情景下,为满足新增的用电需求,实现碳达峰、碳中和目标,各类电源尤其是新能源需高速发展,相应电力投资将保持在较高水平。新能源电量渗透率超过15%后,系统成本到达快速增长的临界点,测算的2025年、2030年系统成本分别是2020年的2.3倍、3倍;上述因素将推动供电成本波动上升,预计20202025年、2025-2030年、2030-2040年电力供应成本投入分别约14.5万亿元、16.1万亿元、33.0万亿元(不考虑折现);2045年前后电
13、力供应成本投入进入平台期,电力需求转入低速增长阶段,电力基础设施新增投资较少,电力需求主要由上网边际成本很低的新能源发电提供,系统运行成本进入平台期。在电力低碳转型发展路径下,以风能、光伏为代表的新能源将成为电力供应主体,给现有电力系统带来战略性、全局性变革。在供给侧,新能源逐步成为装机和电量的主体;在用户侧,分布式电源、多元负荷、储能等发/用电一体的“产消者大量涌现;在电网侧,以大电网为主导、多种电网形态相融并存的格局逐步形成。电力系统整体运行的机理必然出现深刻变化,为了推动我国电力碳达峰、碳中和发展目标的实施落地,还需要重点关注以下四方面问题。(一)科学确定煤电发展定位煤电与非化石能源并非
14、简单的此消彼长,而应是协调互补的发展关系,解决好煤电发展问题是我国稳妥实现电力低碳转型的关键。煤电由电量主体转变为容量主体,在为新能源发展腾出电量空间的同时,提供灵活调节能力以确保能源供给安全。目前,我国煤电装机容量约1.08x109kW,其中约9l08kW的是高参数、大容量煤电机组;应合理利用这些优质存量资产,科学谋划煤电退出路径,协调好煤电与可再生能源的发展节奏,防止煤电大规模过快退出而影响电力安全稳定供应。综合考虑,按照“增容控量控容减量减容减量3个阶段来谋划煤电发展路径(见图911)o增容控量阶段。十四五时期煤电发展难以急刹车,装机容量仍需有一定的增长,在此基础上要严控发电量增长;装机
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 我国电力 碳达峰 中和 路径 研究
链接地址:https://www.desk33.com/p-1407145.html