电磁场和电磁波课后习题答案与解析_第四章习题解答.doc
《电磁场和电磁波课后习题答案与解析_第四章习题解答.doc》由会员分享,可在线阅读,更多相关《电磁场和电磁波课后习题答案与解析_第四章习题解答.doc(21页珍藏版)》请在课桌文档上搜索。
1、.习题解答4.1 如题4.1图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为,求槽内的电位函数。解根据题意,电位满足的边界条件为根据条件和,电位的通解应取为题4.1图由条件,有两边同乘以,并从0到对积分,得到故得到槽内的电位分布 4.2 两平行无限大导体平面,距离为,其间有一极薄的导体片由到。上板和薄片保持电位,下板保持零电位,求板间电位的解。设在薄片平面上,从到,电位线性变化,。yoyboydy题 4.2图解应用叠加原理,设板间的电位为其中,为不存在薄片的平行无限大导体平面间电压为的电位,即;是两个电位为零的平行导体板间有导体薄片时的电
2、位,其边界条件为:根据条件和,可设的通解为 由条件有 两边同乘以,并从0到对积分,得到故得到 4.3 求在上题的解中,除开一项外,其他所有项对电场总储能的贡献。并按定出边缘电容。解在导体板上,相应于的电荷面密度则导体板上沿方向单位长相应的总电荷相应的电场储能为 其边缘电容为 4.4 如题4.4图所示的导体槽,底面保持电位,其余两面电位为零,求槽内的电位的解。解根据题意,电位满足的边界条件为题4.4图根据条件和,电位的通解应取为由条件,有 两边同乘以,并从0到对积分,得到故得到槽内的电位分布为 4.5 一长、宽、高分别为、的长方体表面保持零电位,体积内填充密度为的电荷。求体积内的电位。解在体积内
3、,电位满足泊松方程1长方体表面上,电位满足边界条件。由此设电位的通解为代入泊松方程1,可得由此可得或2由式2,可得故4.6 如题4.6图所示的一对无限大接地平行导体板,板间有一与轴平行的线电荷,其位置为。求板间的电位函数。解由于在处有一与轴平行的线电荷,以为界将场空间分割为和两个区域,则这两个区域中的电位和都满足拉普拉斯方程。而在的分界面上,可利用函数将线电荷表示成电荷面密度。电位的边界条件为题 4.6图由条件和,可设电位函数的通解为由条件,有12由式1,可得 3将式2两边同乘以,并从到对积分,有4由式3和4解得故b题4.7图4.7 如题4.7图所示的矩形导体槽的电位为零,槽中有一与槽平行的线
4、电荷。求槽内的电位函数。解由于在处有一与轴平行的线电荷,以为界将场空间分割为和两个区域,则这两个区域中的电位和都满足拉普拉斯方程。而在的分界面上,可利用函数将线电荷表示成电荷面密度,电位的边界条件为,由条件和,可设电位函数的通解为由条件,有12由式1,可得3将式2两边同乘以,并从到对积分,有4由式3和4解得故若以为界将场空间分割为和两个区域,则可类似地得到4.8 如题4.8图所示,在均匀电场中垂直于电场方向放置一根无限长导体圆柱,圆柱的半径为。求导体圆柱外的电位和电场以及导体表面的感应电荷密度。解在外电场作用下,导体表面产生感应电荷,圆柱外的电位是外电场的电位与感应电荷的电位的叠加。由于导体圆
5、柱为无限长,所以电位与变量无关。在圆柱面坐标系中,外电场的电位为常数的值由参考点确定,而感应电荷的电位应与一样按变化,而且在无限远处为0。由于导体是等位体,所以满足的边界条件为题4.8图由此可设 由条件,有 于是得到 故圆柱外的电位为若选择导体圆柱表面为电位参考点,即,则。导体圆柱外的电场则为导体圆柱表面的电荷面密度为 4.9 在介电常数为的无限大的介质中,沿轴方向开一个半径为的圆柱形空腔。沿轴方向外加一均匀电场,求空腔内和空腔外的电位函数。解在电场的作用下,介质产生极化,空腔表面形成极化电荷,空腔内、外的电场为外加电场与极化电荷的电场的叠加。外电场的电位为而感应电荷的电位应与一样按变化,则空
6、腔内、外的电位分别为和的边界条件为时,;时,为有限值;时,由条件和,可设带入条件,有 ,由此解得 ,所以题4.10图4.10 一个半径为、无限长的薄导体圆柱面被分割成四个四分之一圆柱面,如题4.10图所示。第二象限和第四象限的四分之一圆柱面接地,第一象限和第三象限分别保持电位和。求圆柱面内部的电位函数。解由题意可知,圆柱面内部的电位函数满足边界条件为为有限值;由条件可知,圆柱面内部的电位函数的通解为代入条件,有 由此得到故4.11 如题4.11图所示,一无限长介质圆柱的半径为、介电常数为,在距离轴线处,有一与圆柱平行的线电荷,计算空间各部分的电位。解在线电荷作用下,介质圆柱产生极化,介质圆柱内
7、外的电位均为线电荷的电位与极化电荷的电位的叠加,即。线电荷的电位为 1题4.11图而极化电荷的电位满足拉普拉斯方程,且是的偶函数。介质圆柱内外的电位和满足的边界条件为分别为为有限值;时,由条件和可知,和的通解为23将式13带入条件,可得到45当时,将展开为级数,有 6带入式5,得 7由式4和7,有 由此解得 ,故得到圆柱内、外的电位分别为89讨论:利用式6,可将式8和9中得第二项分别写成为其中。因此可将和分别写成为由所得结果可知,介质圆柱内的电位与位于0的线电荷的电位相同,而介质圆柱外的电位相当于三根线电荷所产生,它们分别为:位于0的线电荷;位于的线电荷;位于的线电荷。4.12 将上题的介质圆
8、柱改为导体圆柱,重新计算。解导体圆柱内的电位为常数,导体圆柱外的电位均为线电荷的电位与感应电荷的电位的叠加,即。线电荷的电位为1而感应电荷的电位满足拉普拉斯方程,且是的偶函数。满足的边界条件为;。由于电位分布是的偶函数,并由条件可知,的通解为2将式1和2带入条件,可得到3将展开为级数,有4带入式3,得5由此可得 ,故导体圆柱外的电为6讨论:利用式4,可将式6中的第二项写成为其中。因此可将写成为由此可见,导体圆柱外的电位相当于三根线电荷所产生,它们分别为:位于0的线电荷;位于的线电荷;位于的线电荷。4.13 在均匀外电场中放入半径为的导体球,设1导体充电至;2导体上充有电荷。试分别计算两种情况下
9、球外的电位分布。解1这里导体充电至应理解为未加外电场时导体球相对于无限远处的电位为,此时导体球面上的电荷密度,总电荷。将导体球放入均匀外电场中后,在的作用下,产生感应电荷,使球面上的电荷密度发生变化,但总电荷仍保持不变,导体球仍为等位体。设,其中是均匀外电场的电位,是导体球上的电荷产生的电位。电位满足的边界条件为时,;时,其中为常数,若适当选择的参考点,可使。由条件,可设代入条件,可得到 ,若使,可得到 2导体上充电荷时,令,有 利用1的结果,得到 4.14 如题4.14图所示,无限大的介质中外加均匀电场,在介质中有一个半径为的球形空腔。求空腔内、外的电场和空腔表面的极化电荷密度介质的介电常数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电磁场 电磁波 课后 习题 答案 解析 第四 解答
链接地址:https://www.desk33.com/p-14572.html