《中国邮电高校学报(英文)》论文投稿模板.docx
《《中国邮电高校学报(英文)》论文投稿模板.docx》由会员分享,可在线阅读,更多相关《《中国邮电高校学报(英文)》论文投稿模板.docx(10页珍藏版)》请在课桌文档上搜索。
1、Noisyspeechemotionrecognitionusingsamp1.ereconstructionandmu1.tip1.e-kerne1.1.earningJiangXiaoqing121XiaKcwcn1(0),1.inYong1.iang,BaiJianchuan1. Schoo1.XE1.cctnx2Infixnuiitxi1.Acrn.IfcbeiUfIiYCrtiI)MTbtKKihgy.TianjinXOU1.I.Chuu2. Schoo1.ofInZormutionScuetuxandEngiCKCnc:,UnivCnjCyfJirun.J1.n由25K22.Cu3
2、. InfoEXiiionCeneer.HanjinChsiian1.ivcnMy.TiCejin5(MMH4.ChinaAbstractSpeechemotionrecognition(SER)innoisyenvixmmen1.isavita1.issueinartificia1.ime1.Iigence(A1.).Inthispaper,(hereconstructionofspeechsamp1.esrcnu)vcstheaddednoise.Acousticfeaturesextractedfromthereconstructedsamp1.esarcse1.x1.cd(obui1.
3、danopirna1.feuresubsetwithbe1.terCmO1.iona1.11xognizabih1.y.Amuhipk-keme1.(MK)support,ectormachine(SVM)c1.assifierso1.vedbyscni-dc11nitcprogramming(SDPIisadoptedinSERprocedure.TheproposedInC1.hodinthispaperisde11ms1.rbus1.whennmseexists.KcywHdxv1.MrtionsisneededtomakeaPrOperresponse.Inthispaper,nois
4、ySERisstudiedusing(hecombinationofsamp1.ereeouirUC1.ionbasedoncompressedsensing(CS)theoryandmu1.tip1.eke11e1.1.earning(MK1.).InSER1.woessentia1.aspectsinf1.uencingthePCrfOfmansoftheemotionrecognitionsystemW2OI6CxespriirJutk1.r:XuiKCQCr1.Emai1.:kw*i心MbinVdUeDOI:10.1016SI(K588851.17*H*features,andattc
5、mpposedbyDonohoe(a1.providespromisingmehcKtoOOiSyspeechprocessing6-7.SparsercpfsenatininCStheoryhasbeenusedinnonarane(ricc1.assifier.Zhaoe(a1.adopted1.heenhancedsparseNPZMm1.i1.1.iOac1.assifierIodeus1.SER.Addi1.iuna1.1.y.asIhcderivedCocffiden1.sofnisearersparseinanytransferd(xnain.itisimpossib1.eIor
6、ve(heI1.cxibi1.i1.yofkerne1.fur(i.MK1.isProPOMrdanddeveked(bina(knofdif1.crcntkerne1.s.1.anCkriCtcta1.PrOPOSCdMK1.withatransductionsettingfor1.earningakerne1.matrixfromdata.Themethodaimedattheopibinationofpredefinedbasekerne1.stogenerateagoodtargetkerne1.(1.Jincta1.Pft)POScdfeaturefusionmethodbasedo
7、nMK1.toimprovethetoa1.SERperformanceofc1.eansamp1.es.TheWdghISofdi11crcnkerne1.scorrespondingtotheghba1.and1.oca1.featuresaregivenhughagfidSearChnhve(heSVMnde1.inabinaryInjeMructuredmuki-c1.assc1.assifier,and(hefusionCOefnCien1.qOfdifferentkerne1.sareso1.vedbyIhcSDP(ofindUPIima1.WeighISofmuI1.ip1.ck
8、erne1.s.The3gofthep;iprarcstrc1.uredasIhcfo1.1.owings:Sect2reviews1.hebasicideaofCSinspexhsigna1.processingandana1.yzestheperformanceofnoisysamp1.ereconstruction.Sect.3introducesMK1.so1.vedbySDRAcousticfeaturesandfeaturese1.ectionarcpresentedinSect.4.ThCpcribrmanceeva1.uationofSERandexperimenta1.res
9、u1.tsarci1.1.ustratedandana1.yzedinSect.5.Fina1.1.ySect.6devotestotheconc1.usions.2 CSandsamp1.ereconstructionofnoisyspeechCScombinessamp1.ingandcomssiinintooMepusingIbeminimumnumberofmeasurementsWhhmaximuminfonnation.CSaimsIurecoversparseMgna1.withfarIg(hanNyquis1.*Sh;mnonsamp1.ingr*te.u11dIberecon
10、structioncanbeexactunderkeyConCCPIysuch-1.InEq.(I)Vzisbeorthogona1.basisIM1.rix,a1.sonamedrepresentationmatrix,=(*.,“)isprojectioncoefficient,isIhenecioncoefficientInaIriXand=V,1x.Itcanbesaidthatxandaarctheequiva1.emrepreenuwnsofIhesamesigna1.withxintimedomainwhi1.eaindomain.Whenthesigna1.xon1.yhask
11、non-zerorcocftkicn(sandkN.nisIhCSPaZtsisofxandxcanbeconsideredksparsewih*rserepresentaionofEq.(1).InCS1.ben.IhesensingprocessCanberepresentedas:尸极(2)InEq.(2)isthejVasurcmcntmatrix,andFE(MVVMisthemeasuremenvectorof-dimensina1.Compressionisrea1.izedbecause(hedimensionofneasurenntsyisfar1.essthan(hedim
12、ensionofthesigna1.x.WithEq.(I),Eq.(2)canberewrienas:”6M(3)where0=isMNdimensiona1.recmMruc1.ionmatrix,andaisksparsevectorrepresenting1.heprojectioncoefficientsofxinVxdomain.Reconstniciiona1.gorithmsinCSIryIOSO1.veEq.(3).whichisanIinderde1.ermivdequationwithoutadeterminantso1.ution.Whenthesigna1.isspa
13、rseandsatisfiestheRIPcondition.asparseapproximationso1.ution(OEq.(3)canbeobtainedbyminimizing(he1.1-norm.RIPofna1.rixisdefinedoniisoine1.ryconMan(c(O.I)fora&sparsesigna1.xani1.Miiisfies:1.-!1.+mmatrixarenear1.yorthogona1.Theequiva1.enconditionofRIPis(heiIKobereiKCbetweenIiwaNurenicntmatrix;ind(herep
14、resentationmatrix.Avarietyofreconstructionmethodssuchasgreedya1.gorithmsandconvexQP1.imi/a1.iencanbeusedinIhCso1.vingPnKofEq.(3)B-2U.WhenCStheoryisapp1.iedtospeechsigna1.processing,theprerequisiteistoachievethesparserepresentationofspeechsigna1.susingproperorthogona1.basis.ThCexcitationofvoicedandun
15、voicedspeechisquasi-periodicvibrationsofvoca1.cordsandrandomnoiserespective1.y.Sovoicedspeechcarriesthemostenergyofthesamp1.eandfocusesin1.owerfrequencyMXtion.OneofthemostimportantspecmCkiracteristicsofdiscretecosinetransformaion(DCT)is(he3r11ngenergyconcenraionin1.owfrequencycoetticents,whichmakess
16、uitab1.etoana1.yzethesparsityofspeechsigna1.s.T1.ieorthDCTCoefYicieniafn)ofaspeechframexWiIhNsamp1.escanbeca1.cu1.atedby:*、11(2-X-1.)IC.,a(n)=h(w)2-()cos-:/n=1.2NST2Af-J-:w三IHm)-E后2这QwhereW“)denotesthe爪hsamp1.eofthespeechframe.Examp1.esofc1.eanvoicedframeandunvoicedfraneswe1.1.asIheirDCTcoefficients
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中国邮电高校学报英文 中国 邮电 高校 学报 英文 论文 投稿 模板

链接地址:https://www.desk33.com/p-1562986.html