齿轮系统啸叫噪声的计算方法与建模方法.docx
《齿轮系统啸叫噪声的计算方法与建模方法.docx》由会员分享,可在线阅读,更多相关《齿轮系统啸叫噪声的计算方法与建模方法.docx(15页珍藏版)》请在课桌文档上搜索。
1、齿轮系统啸叫噪声的计算方法齿轮啮合过程产生的力经常被认为是齿轮箱的主要激励来源。实际上,通常假设齿轮的静态传递误差和齿轮岫合过程中的刚度的波动是齿轮箱辐射噪声的主要来源.这个过程所产生的动态啮合力通过轮体、轴和轴承传递到齿轮箱上。齿轮箱的振动则会直接引起齿轮箱的啸叫声。本文提出了一种降低啸叫噪声的有效方法。两个基本的途径是降低激励源和阻隔激励力向箱体的传递。静态传递误差是由于齿变形和型而误差(修型和加工误差)引起的。首先通过有限元模型计算得到齿的合规矩阵:然后,为r估计静态传递误差.针对驱动轮的一组连续位置,计算齿轮副的静态平衡,最终,得到了在不同在我荷卜.由于啮合刚度波动引起的传递误差。齿面
2、微观轮廓是减小激励的有效手段。因此,提出了种有效的齿面修型方法。通过频谱迭代法求解频域内的运动参数方法来得到动态响应,这种方法能有显著降低求解时间.实际上,这种方法也能够有效的进行离散分析和参数研究。计算所使用的输入是通过有限元计算得到的激励源和整个齿轮箱的模态,包括齿轮,轴和外壳。通过与实验数据对比,证明了该计算方法的准确性。1.绪论啮合过程是齿轮传动系统的更要激励源,齿轮箱常常是汽车噪声和振动的应要来源。齿轮箱的内部激励源是各种各样的,主要来源则是齿轮静态传动误差(STE)的波动11-2。STE表示动齿轮的实际位置与其理论值之间的差异。STE值的波动主要是由手齿自主(工艺修正)和非自主(工
3、艺瑕疵)的形状偏差以及齿、轮体和曲轴的微观弹性变形引起的,同时传递误差也会引起啮合刚度的波动。在运行状况F.参数激励会在啮合过程中产生动载荷。动态载荷通过轮体、曲轴、轴承传递到齿轮箱体结构上,如图1所示。同时,齿轮箱振动也是噪声的最主要来源3“图1齿轮箱喘叫噪声的产生和传递I、齿间激励:2、激励的传递;3、箱体振动传递误差可以通过对主动齿轮微观修型来减小,进而能够降低辐射噪声。在本文中,对每对齿轮副进行以下的参数化优化:小齿轮与从动轮的齿顶修型,比如齿顶材料的去除量;小齿轮和从动轮齿顶修型的起点;主动齿的齿轮中心:在一定扭矩卜对简电齿轮系统进行修型已经得到了广泛研究4-6。但.对多齿轮传动系统
4、的研究依然很少见7.本文介绍了对卡车定时级联齿轮传动系统进行优化的详细过程,传动系统结构如下图所示:图2研究齿轮传递误差的对象在本文研究中,第一个传动链由3个螺旋齿轮组成并共有8个待优化参数,第二个传动链由2个齿轮组成,因而具有5个优化参数。此外,在齿轮型面上做的修改需要适应大扭矩范围的要求。由于排列组合而来的优化方案有很多,就需要个有效的方法来进行计算。在此我们选用了粒子群优化法|8|.由于这种方法是次序。元启发,因而会非常高效,也就是说不必评估函数的一阶导数.此外,我们还研究了这种方法的鲁棒性。实际上,制造误差的高散带来了齿轮传动系统的动力学响应和噪声的剧烈变化。通过对各个结果进行统计分析
5、,使得我们能够对制造误差和状态误差对齿轮传动的影响有更加深入的认识。如图3.我们将动力学响应计算过程应用于汽车齿轮箱上。图3用手研究齿轮箱动态响应的齿轮系统该计算方法需要建立齿轮箱有限元模型,来获得其模态信息。齿轮之间的接触用连接每对啮合齿轮自由度的刚度矩阵来建模。为了实现这一目的,我们采用岫合刚度的平均值,以获得平均模态信息。该方法使用强大的频率分辨率算法,以迭代求解动力学方程“1-12卜并对领谱迭代法进行扩展,以便将优化参数考虑在内。在本案例中,由于刚度的波动造成激励之间存在耦合3。我们得到啮合动力学方程如卜:/=了JK.C,M分别代表系统的刚度矩阵,阻尼矩阵和质量矩阵:X表示系统的广义坐
6、标系,()代表时间导数;Rj是两个啮合齿轮的自由度的宏观几何耦合矢星:Kj是第j阶啮合刚度:求解可以得到齿轮箱在频域上的响应。运行速度直接影响共振峰幅值和振动响应幅值,这两个量直接影响齿轮箱噪声的严重程度。这个方法也可用于优化变速箱其他部件,或计算不同的齿轮型而带来的传递误差。图4计算过程示意2 .静态传递误差计兑以及齿轮型面优化优化问题需要定义一个适当的适应性函数和算法来求解。本文这部分内容闸述解决这困难问题的途径,此外,对该方法的鲁棒性也进行了研究。2.1 静态传递误差计第文献14-15中介绍的传速误差计算方法是一种很经典的方法。这种方法考虑了用性静态变形和齿面之间的初始间隙,通过求解描述
7、齿轮接触位置的方程来得到暗合位置。2.2 优化后适应度方程常用于描述啮合误差的参数是峰峰值响应(STEPP),考虑到优化工作的目的是在给定扭矩范围(Tmin-TmaX)卜来减小传递误差,因而选用f作为适应度方程。f的定义为转矩范围上,由3点高斯近似得到的STEPP积分函数。J/=Jp(T)STE(T)dT其中将扭矩分布P(T)设定为均匀分布。2.3 粒子群优化这种方法是基于一个群体在给定空间中交换关于其位置的信息的消除行为,并根据其正在搜索的内容来踊定最佳位置。在本案例中,使用了25个粒子,位于根据不同优化参数构建的超空间中的初始随机位置。研究中的最佳位置即是能使适应度函数最好的不同优化参数的
8、组合。针对每个迭代步和每个粒子,需耍在以下条件下来计算新的粒子速度以及对新位置的评估:当前粒子的速度:当前位置:最佳位竟:相邻粒子的母佳位置:2.4 鲁棒性统计分析假定SO是由粒子群优化方法得到的优化方案.鲁棒性研究是使用蒙特卡洛模拟分析完成的,即在每个参数一定的参数步长下,考虑可能的轮廓和螺旋角误差,来得到1000组优化方案,在以优化优化方案为中心的超空间上进行随机选择。对100o个优化方案分别建立概率密度函数,并得到平均值和标准偏差等统计值.图5给出了不同优化方案的概率密度分布,并表明了该如何选择最优解决方案。方案2有较小的平均值,但波动范围较大;S1.则是在平均值和劣化能力之间的最优妥协
9、。图53齿轮正时系统优化前方案和3个优化后方案概率密度分布对比2.5 结果分析-噪声水平的降低将优化前后的齿轮组安装在内燃机上,并测成相应的辐射噪声,实际测试得到的噪声级比预期值要差一些,其中一个原因是优化后次齿轮系统上的扭矩值比优化前要稍高。但在这种情况卜.,整体声功率还是降低了Idb.这一结果是令人满意的,因为初始的噪声水平并不高,而I1.我们只优化了10个齿轮中的5个,同时测试过程中其他噪声源依然存在。值得注意的是,当我们只优化小齿轮时,优化前后声功率级在某些频段上可以降低4db,雷诺卡车已采用该标准作为齿轮传动系统开发中的新标准。图6声功率随着发动机转速的变化3 .振动响应计算结果的物
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 齿轮 系统 噪声 计算方法 建模 方法
![提示](https://www.desk33.com/images/bang_tan.gif)
链接地址:https://www.desk33.com/p-1571607.html