基于单片机的数字温度计设计58891.doc
《基于单片机的数字温度计设计58891.doc》由会员分享,可在线阅读,更多相关《基于单片机的数字温度计设计58891.doc(19页珍藏版)》请在课桌文档上搜索。
1、基于单片机的数字温度计设计引言随着现代信息技术的飞速发展和传统工业改造的逐步实现能够独立工作的温度检测和显示系统应用于诸多领域。传统的温度检测以热敏电阻为温度敏感元件。热敏电阻的成本低,但需后续信号处理电路,而且可靠性相对较差,测温准确度低,检测系统也有一定的误差。与传统的温度计相比,这里设计的数字温度计具有读数方便,测温围广,测温精确,数字显示,适用围宽等特点。选用AT89C51型单片机作为主控制器件,DSl8B20作为测温传感器通过4位共阳极LED数码管串口传送数据,实现温度显示。通过DSl8B20直接读取被测温度值,进行数据转换,该器件的物理化学性能稳定,线性度较好,在0100最大线性偏
2、差小于0.1。该器件可直接向单片机传输数字信号,便于单片机处理及控制。另外,该温度计还能直接采用测温器件测量温度,从而简化数据传输与处理过程。2系统硬件设计方案根据系统功能要求,构造图1所示的系统原理结构框图。图1 系统原理结构框图2.1单片机的选择AT89C51作为温度测试系统设计的核心器件。该器件是INTEL公司生产的MCS一5l系列单片机中的基础产品,采用了可靠的CMOS工艺制造技术,具有高性能的8位单片机,属于标准的MCS51的CMOS产品。不仅结合了HMOS的高速和高密度技术及CHMOS的低功耗特征,而且继承和扩展了MCS48单片机的体系结构和指令系统。单片机小系统的电路图如图2所示
3、。图2 单片机小系统电路AT89C51单片机的主要特性:与MCS-51 兼容,4K字节可编程闪烁存储器;灵活的在线系统编程,掉电标识和快速编程特性;寿命为1000次写/擦周期,数据保留时间可10年以上;全静态工作模式:0Hz-33Hz;三级程序存储器锁定;128*8位部RAM,32可编程I/O线;两个16位定时器/计数器,6个中断源;全双工串行UART通道,低功耗的闲置和掉电模式;看门狗WDT及双数据指针;片振荡器和时钟电路;2.2 温度传感器介绍DS18B20可以程序设定912位的分辨率,精度为0.5C。可选更小的封装方式,更宽的电压适用围。分辨率设定,及用户设定的报警温度存储在EPROM中
4、,掉电后依然保存。温度传感器DS18B20引脚如图3所示。8引脚封装 TO92封装图3 温度传感器引脚功能说明: NC :空引脚,悬空不使用; VDD :可选电源脚,电源电压围35.5V。当工作于寄生电源时,此引脚必须接地。 DQ :数据输入/输出脚。漏极开路,常态下高电平。 GND :为电源地DS18B20部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。64位光刻ROM的排列是:开始8位28H是产品类型标号,接着的48位是该DS18B20自身的序列号,最
5、后8位是前面56位的循环冗余校验码CRC=X8+X5+X4+1。光刻ROM的作用是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。 DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以0.0625/LSB形式表达,其中S为符号位。 这是12位转化后得到的12位数据,存储在18B20的两个8比特的RAM中,二进制中的前面5位是符号位,如果测得的温度大于0,这5位为0,只要将测到的数值乘于0.0625即可得到实际温度;如果温度小于0,这5位为1,测到的数值需要取反加1再乘于0.0625即可得到实际温度
6、。 例如+125的数字输出为07D0H,+25.0625的数字输出为0191H,-25.0625的数字输出为FF6FH,-55的数字输出为FC90H。 DS18B20温度传感器的部存储器包括一个高速暂存RAM和一个非易失性的可电擦除的E2RAM,后者存放高温度和低温度触发器TH、TL和结构寄存器。 暂存存储器包含了8个连续字节,前两个字节是测得的温度信息,第一个字节的容是温度的低八位,第二个字节是温度的高八位。第三个和第四个字节是TH、TL的易失性拷贝,第五个字节是结构寄存器的易失性拷贝,这三个字节的容在每一次上电复位时被刷新。第六、七、八个字节用于部计算。第九个字节是冗余检验字节。 该字节各
7、位的意义如下:TM R1 R0 1 1 1 1 1低五位一直都是1 ,TM是测试模式位,用于设置DS18B20在工作模式还是在测试模式。在DS18B20出厂时该位被设置为0,用户不要去改动。R1和R0用来设置分辨率,如表1所示:DS18B20出厂时被设置为12位 表1 DS18B20温度转换时间表R1R0分辨率/位温度最大转向时间00993.750110187.510113751112750根据DS18B20的通讯协议,主机控制DS18B20完成温度转换必须经过三个步骤:每一次读写之前都要对DS18B20进行复位,复位成功后发送一条ROM指令,最后发送RAM指令,这样才能对DS18B20进行预
8、定的操作。复位要求主CPU将数据线下拉500微秒,然后释放,DS18B20收到信号后等待1660微秒左右,后发出60240微秒的存在低脉冲,主CPU收到此信号表示复位成功。2.3温度传感器与单片机的连接温度传感器的单总线与单片机的P20连接,P20是单片机的高位地址线A8。P2端口是一个带部上拉电阻的8位双向IO,其输出缓冲级可驱动4个TTL逻辑门电路。对该端口写1,可通过部上拉电阻将其端口拉至高电平,此时可作为输入口使用,这是因为部存在上拉电阻,某一引脚被外部信号拉低时会输出一个电流。在访问外部程序存储器或16位地址的外部数据存储器时。如执行MOVX DPTR指令,则表示P2端口送出高8位的
9、地址数据。在访问8位地址的外部数据存储器时,可执行MOVX RI指令,P2端口容即为特殊功能寄存器区中R2寄存器容,整个访问期间不改变。在Flash编程和程序校验时,P2端口也接收高位地址和其他控制信号。图4为DSl8820部结构。图5为DSl8820与单片机的接口电路。图4 DS18B20部结构图 图5 DS18B20和单片机的接口连接2.4 复位信号及外部复位电路单片机的P1.6端口是MAX813看门狗电路中喂狗信号的输入端,即单片机每执行一次程序就设置一次喂狗信号,清零看门狗器件。若程序出现异常,单片机引脚RST将出现两个机器周期以上的高电平,使其复位。该复位信号高电平有效,其有效时间应
10、持续24个振荡脉冲周期即两个机器周期以上。若使用频率为12 MHz的晶体振荡器,则复位信号持续时间应超过2s才完成复位操作。2.5 单片机与报警电路系统中的报警电路是由发光二极管和限流电阻组成,并与单片机的P1.2端口连接。P1端口的作用和接法与P2端口相同,不同的是在Flash编程和程序校验期间,P1接收低8位地址数据。2.6 电源电路由于该系统需要稳定的5 V电源,因此设计时必须采用能满足电压、电流和稳定性要求的电源。该电源采用三端集成稳压器LM7805。它仅有输入端、输出端及公共端3个引脚,其部设有过流保护、过热保护及调整管安全保护电路由于所需外接元件少,使用方便、可靠,因此可作为稳压电
11、源。图6为电源电路连接图。图6 电源电路连接图2.7 显示电路采用技术成熟的74HCl64实现串并转换。LED显示分为静态显示和动态显示。这里采用静态显示,系统通过单片机的串行口来实现静态显示。串行口为方式零状态,即工作在移位寄存器方式,波特率为振荡频率的1/12。当器件执行任何一条将SBUF作为目的寄存器的命令时,数据便开始从RXD端发送。在写信号有效时,相隔一个机器周期后发送控制端SEND有效,即允许RXD发送数据,同时允许从TXD端输出移位脉冲。图7为显示电路的连接图。图7 显示电路的连接图2.8 看门狗电路系统中把P1.6作为看门狗的喂狗信号;将MAX813的RESET与单片机的复位信
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 单片机 数字 温度计 设计 58891
链接地址:https://www.desk33.com/p-16025.html