实用标准偏差与相对实用标准偏差公式.doc
《实用标准偏差与相对实用标准偏差公式.doc》由会员分享,可在线阅读,更多相关《实用标准偏差与相对实用标准偏差公式.doc(14页珍藏版)》请在课桌文档上搜索。
1、标准偏差出自 MBA智库百科(wiki.mbalib./)数学表达式: S-标准偏差% n-试样总数或测量次数,一般n值不应少于20-30个 i-物料中某成分的各次测量值,1n; 标准偏差的使用方法六个计算标准偏差的公式1标准偏差的理论计算公式设对真值为X的某量进展一组等精度测量, 其测得值为l1、l2、ln。令测得值l与该量真值X之差为真差占, 如此有1 = liX2 = l2Xn = lnX我们定义标准偏差(也称标准差)为 1 由于真值X都是不可知的, 因此真差占也就无法求得, 故式只有理论意义而无实用价值。 标准偏差的常用估计贝塞尔公式由于真值是不可知的, 在实际应用中, 我们常用n次测
2、量的算术平均值来代表真值。理论上也证明, 随着测量次数的增多, 算术平均值最接近真值, 当时, 算术平均值就是真值。 于是我们用测得值li与算术平均值之差剩余误差也叫残差Vi来代替真差 , 即 设一组等精度测量值为l1、l2、ln如此通过数学推导可得真差与剩余误差V的关系为 将上式代入式(1)有 (2) 式(2)就是著名的贝塞尔公式(Bessel)。 它用于有限次测量次数时标准偏差的计算。由于当时,,可见贝塞尔公式与的定义式(1)是完全一致的。 应该指出, 在n有限时, 用贝塞尔公式所得到的是标准偏差的一个估计值。它不是总体标准偏差。因此, 我们称式(2)为标准偏差的常用估计。为了强调这一点,
3、 我们将的估计值用“S 表示。于是, 将式(2)改写为 (2) 在求S时, 为免去求算术平均值的麻烦, 经数学推导(过程从略)有 于是, 式(2)可写为 (2) 按式(2)求S时, 只需求出各测得值的平方和和各测得值之和的平方艺 , 即可。 标准偏差的无偏估计数理统计中定义S2为样本方差数学上已经证明S2是总体方差2的无偏估计。即在大量重复试验中, S2围绕2散布, 它们之间没有系统误差。而式(2)在n有限时,S并不是总体标准偏差的无偏估计, 也就是说S和之间存在系统误差。概率统计告诉我们, 对于服从正态分布的正态总体, 总体标准偏差的无偏估计值为 (3) 令如此 即S1和S仅相差一个系数K,
4、K是与样本个数测量次数有关的一个系数, K值见表。 计算K时用到 (n + 1) = n(n)(1) = 1由表1知, 当n30时, 。因此, 当n30时, 式(3)和式(2)之间的差异可略而不计。在n=3050时, 最宜用贝塞尔公式求标准偏差。当n50时的情况, 当n50时,n和(n-1)对计算结果的影响就很小了。 的极差估计由于以上几个标准偏差的计算公式计算量较大, 不宜现场采用, 而极差估计的方法如此有运算简便, 计算量小宜于现场采用的特点。 极差用R表示。所谓极差就是从正态总体中随机抽取的n个样本测得值中的最大值与最小值之差。 假如对某量作次等精度测量测得l1、,且它们服从正态分布,
5、如此 R = lmaxlmin概率统计告诉我们用极差来估计总体标准偏差的计算公式为 (5) S3称为标准偏差的无偏极差估计, d2为与样本个数n(测得值个数)有关的无偏极差系数, 其值见表2 由表2知, 当n15时, 因此, 标准偏差更粗略的估计值为 (5) 还可以看出, 当200n1000时,因而又有 (5) 显然, 不需查表利用式(5)和(5)了即可对标准偏差值作出快速估计, 用以对用贝塞尔公式与其他公式的计算结果进展校核。 应指出,式(5)的准确度比用其他公式的准确度要低, 但当5n15时,式(5)不仅大大提高了计算速度, 而且还颇为准确。当n10时, 由于舍去数据信息较多, 因此误差较
6、大, 为了提高准确度, 这时应将测得值分成四个或五个一组, 先求出各组的极差R1、, 再由各组极差求出极差平均值。 极差平均值和总体标准偏差的关系为 需指出, 此时d2大小要用每组的数据个数n而不是用数据总数N(=nK)去查表2。再如此, 分组时一定要按测得值的先后顺序排列,不能打乱或颠倒。 标准偏差的平均误差估计平均误差的定义为 误差理论给出 (A) 可以证明与的关系为 (证明从略) 于是(B) 由式(A)和式(B)得 从而有 式(6)就是佩特斯(C.A.F.Peters.1856)公式。用该公式估计值, 由于right|Vright|不需平方,故计算较为简便。但该式的准确度不如贝塞尔公式。
7、该式使用条件与贝塞尔公式相似。标准偏差的应用实例1对标称值Ra = 0.160 m m, 试求该样块Rn的平均值和标准偏差并判断其合格否。 解:1)先求平均值2)再求标准偏差S 假如用无偏极差估计公式式(5)计算, 首先将测得的, 15个数据按原顺序分为三组, 每组五个, 见表3。表3 组号l_1l_5R 10.19 20.31 30.24 因每组为5个数据, 按n=5由表2查得故 假如按常用估计即贝塞尔公式式(2) , 如此 假如按无偏估计公式即式(3)计算, 因n=15,由表1查得K, 如此 假如按最大似然估计公式即式(4)计算, 如此 = 0.09296( m )假如按平均误差估计公式即
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 实用 标准偏差 相对 公式
链接地址:https://www.desk33.com/p-16309.html