二次函数章末九大题型总结(拔尖篇)(人教版).docx
《二次函数章末九大题型总结(拔尖篇)(人教版).docx》由会员分享,可在线阅读,更多相关《二次函数章末九大题型总结(拔尖篇)(人教版).docx(11页珍藏版)》请在课桌文档上搜索。
1、专题22.12二次函数章末九大题型总结(拔尖篇)【人效版【题型1利用:次函数的性质比较四个字母的大小】I【遨型2利用二次函数的性质判断多结论问题】1KSfi3根据新定义求字母取他范国】3【题型4利用二次函数的性质求最值】4【题里5根据二次函数的最值求字母的值或取值范Itn4【题型6二次函数与一次函数图象的综合】5【题型7抛物线的平移、旋料、对称】6【遐型8二次函数中的存在性时即】8【题型9由实际向超抽象出二次函数模型】9,举一反三【型1利用二次函皴的性朋比较四个字母的大小】【例1】(2023春安徽年阳九年级章阳实验中学校考期中)若m,n(mn)是关于X的一元二次方程(X-)(x-b)-3=0的
2、两根,且ab,则m,n,a,b的大小关系是()A.nnahB.amnbC.ambnD.mab0)两实数根分别为a,0且a万,则a、夕满足()A.-Ia3B.a-1.30C.a-1?3D.-1.a3若小b女8是关于工的方程2+(*-771)(*-11)=0的两根.则mn,则a、h,m.的大小关系是.【变式1-3(2023,江苏扬州,九年级校联考期末)若X“x2(xyx2)是方程(Xm)(x3)=1.(mV3)的两根.则实数H.Xi.3.m的大小关系是()A.mx3B.XmX23C.xm32Dxxjm(。为非零常数,1,当2时yRSx的增大而减小:若图象经过点(O,I),W1.-1对一切正数“,总
3、有”2,则IV”号.A.B.(XXDC.dX1.XDD.【变式2”(2023春北京九年线北京市第十二中学校考期中)己知柚物线y=+b+c(w)与X轴交于点4(-1,0).对称料为直线X=1.与y轴的交点8在(02和(0,3)之间(包含这两个点)运动,有如下四个结论:跄物线与X轴的另一个交点是(3.0):点Ca1.,力),DCr2,力)在枪物战上,且满足XiX2则刈y2常数项c的取值葩的是2c3:系数的取值范困是一1-.上述结论中.所有正确结论的序号是()A.B.(C.D.【变式2-22023春湖南长沙九年徼校联考期末)小明研究二次函数y=-+2mx-m2+1(m为常数)性质时有如下结论:该二次
4、函数图象的顶点始终在平行于X轴的宜线上:该二次函数图象的顶点与X轴的两个交点构成等腰宜角三角形:当-1x2:点A(X1,必)与点8(X2,以)在函数图望上,若Xi2m.W1.yij其中正确结论的个数为()A.1B.2C.3D.4【变式2-3(2023春山东久州九年级统考期末如图,物物践y=-2+2x+m+1.(m为常数)交y轴于点A,与X轴的一个交点在2和3之间,蹊点为B.抛物线y=-x2+2x+m+1.与直规y=m+2有且只有一个交点:若点M(-2.M、点N岁2)、点P(2,在该函数图飘匕则”v.v2v53:将该抛物税向左平移2个单位,再向下平移2个单位,所知他物线解析式为y=-x+1.)2
5、+m:点A关于直线x=1.的对称点为C点D.E分别在X轴和y轴上.当m=1.时.四边形BCDE周长的最小值为闻+e.其中正确判断有()A.B.C.(g)D.1届型3根据断定义求字母取值瓶图】【例3】(2023春.山东济南.九年级统考期末)新定义:若一个点的纵坐标是横坐标的2倍.则称这个点为二倍点.若二次南数y=-2x+c(c为常数在一1x4的图象上存在两个二倍点,则C的取值范用是()A.-5c4B.0c1C.-5c1D.0c4【变式3-1】2023乔广西南宇九年级统考期中)新定义:在平面直角坐标系中,对于点。(掰,”)和点产(,”,”,),若满足m0时,11*=4:/nV0时,n,n.则称点产
6、(m,n,)是点P(m.n)的限变点.例如:点Prn)如:102=1-2=-1,43=4+33=4.下列说法:一79=-16;若1(二-X)=-1.则X=-I或2:若一2(3+4x)-5.则XOg-;:y=(-X+1.)(x2-2x+1)与直线y=m,为常数)有I个交点,则一1VmV-3.其中正确的个数是()A.4B.3C.2D.I【变式3-3(2023春安徽合肥九年缎校联考期末定义:在平面直角坐标系中,若点A满足横、纵坐标都为整数,则把点A叫他“整点”.hB(3.0),C(-1.3)都是“熨点”.她物线y=a2-2ax+a+2(a0)与X轴交于点M,N两点,若该她物我在M、N之间的部分与战段
7、MN所用的区域(包括边界)恰有5个整点,则a的取自范围是(A.-1.aOB.-2a-1C.-1.a-D.-2a094利用二次函数的性质求值】【例4】(2023春九年级统考期中)已知.二次函数y=2+b-i(a.是常数.*0)的图象经过4(2,1).3(4,3),C(4,1)三个点中的其中两个点,平移该函数的图象,使其顶点始终在真找y=X-I上.则平移后所得抛物线与y轴交点纵坐标的)A.最大值为-1B.最小值为-1C.最大值为4D.最小位为一:【变式4-12023春广东汕头九年级统考期末)如图,在平面且角坐标系中,.次函数y=M+3-HW图象与X轴交于八、C两点,与轴交于点8,落尸是A轴上一动点
8、,点Q(0,2)在丫轴E连接PQ,则PQ+的最小伯是()A.6B.2+三2C.2+32D.32【变式4-2(2023春辽宁九年级东北育才双语学校校考期末在平面直角坐标系中,点A(1,),B.若点“(小-).,+3,-4).则四边形MN8八的周长的最小值为()A.10+2B.10+y3C.5+132D.5+1.33【变式4-3】(2023春北京海淀,九年级人大附中校考期末)已知弛物线y=a.r+bx+c(,02a,点A(1,.M),B,C在该拊物线上,当恒成立时,然下的城大值为()A.IB.JC.7D.I*3【型5根据二次西数的值求字母的值或取值分BU【例5】(2023汴,浙江九年级期中)二次函
9、数y=+2mx-3,当OSXS1.时,若图象上的点到X釉距离的最大侑为4,则m的伯为()A.-1或IB.-1或1或3C.1或3D.-1或3【变式S-I】(2023东湖北黄冈九年级统考期中在平面H角眼标系中,若点P的横坐标和纵坐标相等,则称点P为完美点.己知二次函数y=2+b-(,b1.第8t,0)的图象上有且只有一个完美点(也与,且当0VXndM.函数y=ax?+b-3的最小值为-3.最大值为I,则m的取值范阚是()A.-1m0B.2mC.22【变式S-2(2023春安徽台肥九年期统考期末)已知二次函数,=-F+2x+3,豉取该函数图象在0v4间的部分记为图象G,设经过点(0,,)且平行于X轴
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 章末九大 题型 总结 拔尖 人教版
![提示](https://www.desk33.com/images/bang_tan.gif)
链接地址:https://www.desk33.com/p-1669687.html