6.4.1 平面几何中的向量方法(导学案)(解析版)公开课教案教学设计课件资料.docx
《6.4.1 平面几何中的向量方法(导学案)(解析版)公开课教案教学设计课件资料.docx》由会员分享,可在线阅读,更多相关《6.4.1 平面几何中的向量方法(导学案)(解析版)公开课教案教学设计课件资料.docx(13页珍藏版)》请在课桌文档上搜索。
1、6.4.1平面几何中的向量方法导学案响声学习目标I.通过平行四边形这个几何模型.归纳总结出用向量方法解决平面几何的问题的“三步曲“:2 .明确平面几何图形中的有关性质,如平移、全等、相似、长度、夹角等可以由向量的线性运算及数量积表示;3 .让学生深刻理解向量在处理平面几何问题中的优越性.廿t重点难点1 .教学重点:用向量方法解决实际问题的基本方法:向地法解决几何问题的“三步曲”;2 .教学难点:如何将几何等实际问题化归为向量问题.知识点一用向量解决偌见平面几何问邈的技巧时加类型所用知识公式表示线平行、点共线等问题向瞅共线定理aba-zAv2X2V-0.我中=(x,y),b=(xj,)2).M)
2、垂直问遨数负枳的运算性质abab0xkr2y-0.其,t1.a=x,y)-b=(X2,)i).J1.a,b为非零向量夹角问题数量积的定义COS=部i(为向iab的夹ft1.).其中,6为非零向收长度问题数圻积的定义a=ai=22-其中=(x,.V).“为非零向埴知识点二用向量方法解决平面几何问逊的步骤(I)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题然化为向心问题:(2)通过向j运舞,研咒几何元素之间的关系.如距离、夹角等何题:(3)把运算结果“鲍成几何关系.I点拨向量集数与形于一身,既有代数的抽象性又有几何的直观性.因比,用向量解决平面几何问题,就是朽几何的证明问
3、题转化为向量的运算何题,将“证”转化为“算”,思培清晰,便于操作.1.判断正课,正确的画Y”,错误的画“X.(1)若4A8。是直角三角形,则有油炭=04)(2)f,A/Cb,则直线AB与CZJ平行.()(3)若平面四边形A8C/)满足A+Cb=0.(Ah-Ab).祀=0,则该四边形一定是菱形.()(4)若A8C为直角三角形,则有X&就=0.()(5)若向吊/&/Cb,则A8CC.()(6)在aABC中,若满足GV卜+碇=0,则G为AABC的玳心.()答案:(1)(2)(3)(4)(5)M6W2. (2023下河南高一校联考阶段练习)已知O,a,8是平面上的三个点,直线A8上有一点C1满足八C+
4、3CB=0.则OB=()A.A-=-OCB.汕+1碇3333C.-O-OCD.-O+OC3333【答案】D【分析】根据题意画出示意图由平面向量的线性运算及平面向量基本定理即可表示出08.【详解】根据题意“A1是平面上的三个点线,且上一点C满足AC+3C8=0则位置关系可用下图表示:所以8为线段AC上靠近C的三等分点则由平面向量的线性运算可得OBOA+Af1.=O+AC=OA+(X-OA=O+OC故选:D【点睛】本题考查了平面向量的线性运算,平面向量基本定理的简单应用.属于基础题3. (2023上重庆高三西南大学附中校联考阶段练习)已知点M为R1.ABC外接圆O上的任意一点,ZAfiC=9(P,
5、=i.C=3,贝川。*-08)8,m的最大值为().IB.IC.fD.5【答案】B【分析】根据向量数量积的几何意义,结合图形即可求解.【详解】设Rt外接圆的半径为J由正弦定理得2r=.与=竺1=2,sinZABC3故r=1.所以(OA-OB).朋夕=BAUM=IAcosZABM)=RMcosZBM.当过点圆上一点M作平行于8C的圆的切线时,此时8MeSNA8H最大.由于0到BC的距离为d=;|网=E所以8M8S/A8M的最大值为+故选:B4. (2023下湖北武汉高三阶段练习)若点是锐角”拿直克找。_1.a1.b,b=G长度A8的长度I丽J硒=病央角ZAOB“cOAOBCOSZAOB=_:-O
6、AOB【设汁意图】从向量的线性运算和数量积运算具有的几何背景出发,建立平面几何元索与平面向量之间的对应关等.通过复习前几节所学知识,引入本节新课。送立知识间的浜系,提高学生概括、美比推理的能力。环节二观察分析,惠知概念由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何图形的许多性质,如全等、相似、长度、夹角等都可以由向量的线性运算及数量积表示出来,因此平面几何中的许多问题都可用向量运算的方法加以解决.下面通过两个具体实例,说明向量方法在平面几何中的应用.A例I如图6.4-1,OE是ABC的中位线.用向量方法证明:DEHBC,h/fDEc/【设计意图】钊谩数学情境,通过线及(丸线)平行与
7、向量共线关系的实例,让学生感受在教学学习中,利用平面向量研究平面几何1.111中平行关系这一类问邈.问2:如果两个向量共线,那么向量所在直线的位面关系是怎样的?如何利用平面向量证明线段(直线)平行?【活动预谩】启发学生初步感知用平面向量表示几何图多中的元素,并借助向量运算研究图形中的几何元素之间的关系.分析:我们在初中证明过这个结论,证明中要加辅助线.有一定难度。如果用向量方法证明这个结论.可以取a及Ad为基底,用八8.AC表示。8(:证明。E=gsc即可。【设计意图】让学生感受利用向量解决平面几何问邈的思路,用基底法表示所求向量是向量表示的一种方法.证明:如图642.因为OE是A5C的中位线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 6.4.1 平面几何中的向量方法导学案解析版公开课教案教学设计课件资料 6.4 平面几何 中的 向量 方法 导学案 解析 公开 教案 教学 设计 课件 资料
链接地址:https://www.desk33.com/p-1675459.html