一阶倒立摆控制仿真-论文.docx
《一阶倒立摆控制仿真-论文.docx》由会员分享,可在线阅读,更多相关《一阶倒立摆控制仿真-论文.docx(27页珍藏版)》请在课桌文档上搜索。
1、一阶倒立摆控制仿真摘要:倒立摆系统是一个典型的快速、多变量、非线性、不稳定系统,研究倒立摆的精确控制对工业复杂对象的控制有着重要的工程应用价值。本文对仿真的分类、过程、发展、应用及仿真环境等作了简单的介绍,同时也介绍了倒立摆系统的特性、分类、应用、发展等基本情况。文中采用牛顿-欧拉方法建立一阶倒立摆的数学模型,对精确模型在工作点附件进行线性化和降价处理,利用固高公司的一阶倒立摆参数,计算出传递函数。在数学模型的基础上进行了PID控制的理论分析。利用MATLAB中的SimUlink仿真工具对一阶倒立摆的单回路PlD控制进行仿真分析,在仿真中整定出合理的PlD参数。仿真证实,单回路PlD控制方案能
2、满足对倒立摆摆杆角度的控制要求。关键词:倒立摆;PID控制;仿真;MATLAB-SimulinkSimulationofsingleinvertedpendulumAbstract:Theinvertedpendulumsystemischaracterizedasafastmulti-variablenonlinearessentiallyunsteadysystem.Theresearchonprecisecontroloftheinvertedpendulumisofgreatpracticalengineeringvalueforcontrolproblemsofcomplicated
3、industrialobject.Inthispaper,theclassification,process,development,applicationofsimulationandsimulationenvironmentaresimplyintroduced.ThebasicsituationincludeCharacteristics,classificationapplicationdevelopmentandsoonoftheinvertedpendulumsystemisintroduced.ThistextusestheNewton-theEulemethodtoestabl
4、ishingthemathematicalmodelofsingleinvertedpendulum,carriesonthelinearizationandfallstepprocessingtotheprecisemodelnearbythework-point,usestheparametersofgoogossingleinvertedpendulum,calculatesitstransferredfunctions.AnddotheoreticalanalysisofthePIDcontrolbasedonthemathematicalmodel.ThistextusestheMA
5、TLABSimulinksimulationtoolstodosimulationanalysisofthesingleinvertedpendulum,ssingleloopPIDcontrol,collatedreasonablePIDcontrolledparametersinsimulation.SimulationprovesthatthesingleloopPIDcontrolledplanscansatisfiedtothecontroloftheangleofpendulumrod.Keywords:invertedpendulum;PIDcontrol;simulation;
6、MATLAB-Simulink1绪论11.1 仿真技术的简介1I .1.1仿真概念1II 2仿真分类1II 3仿真过程1III .4系统建模2IV 5模型验证21.2倒立摆系统介绍31.2.1倒立摆的分类31.2.2倒立摆的特性41.2.3倒立摆的发展51.2.4倒立摆的应用51 .3本论文研究的主要内容62一阶倒立摆系统的建模72 .1一阶倒立摆的物理模型73 .2一阶倒立摆的数学模型74 .3一阶倒立摆的实际模型113 PID控制器简介123 .1PID控制原理124 .2PlD控制器的参数整定134 一阶倒立摆PlD控制器系统的仿真研究164.1MATLAB/SIMULINK仿真环境16
7、4.2一阶倒立摆的PID控制理论分析174.3一阶倒立摆的PID控制仿真分析185结论23致谢24参考文献251绪论1.1 仿真技术的简介1.1.1 仿真概念自动控制系统是由被控对象、测量变送装置、执行器和控制器所组成,当选定测量变送装置和执行器后,对自动控制系统进行设计和分析研究,也就是对被控对象的动态特性进行分析和研究,然后根据被控对象的动态特性进行控制器的设计,以求获得能满足性能指标要求的最优控制系统。在控制器类型确定后,则分析和研究控制系统的主要目的之一是获得控制器的最佳整定参数。对于比较简单的被控对象,可以在实际系统上进行实验和调整来获得较好的整定参数。但是在实际生产过程中,大部分的
8、被控对象是比较复杂的,并且要考虑安全性、经济性以及进行实验研究的可能性等,这在现场实验中往往不易做到,甚至根本不允许这样做。例如研究导弹飞行、宇航、反应堆控制等系统时,不经模拟仿真实验就进行直接实验,将对人类的生命和健康带来很大的危险,这时,就需要把实际系统建立成物理模型或数学模型进行研究,然后把对模型实验研究的结果应用到实际系统中去,这种方法就叫做模拟仿真研究,简称仿真。因此,仿真就是用模型(物理模型或数学模型)代替实际系统进行实验和研究。1.1.2 仿真分类仿真所遵循的基本原则是相似原理,即几何相似、环境相似、性能形似。依据这个原理,仿真可分为物理仿真、数学仿真和混合仿真。物理仿真就是应用
9、几何相似原理,制作一个与实际系统相似但几何尺寸较小或较大的物理模型(例如飞机模型放在气流场相似的风洞中)进行实验研究;数学仿真就是是应用数学相似原理,构成数学模型在计算机上进行研究。它由软硬件仿真环境、动画、图形显示、输出打印设备等组成;混合仿真又称数学物理仿真,它是为了提高仿真的可信度或者针对一些难以建模的实体,在系统研究中往往把数学仿真、物理仿真和实体结合起来组成一个复杂的仿真系统,这种在仿真环节中有部分实物介入的混合仿真也称为半实物仿真或者半物理仿真。1.1.3 仿真过程第一步:根据仿真目的确定仿真方案,即根据仿真目的确定相应的仿真结构和方法,规定仿真的边界条件与约束条件。第二步:建立系
10、统的数学模型。对于简单的系统,可以通过某些基本定律来建立数学模型。而对于复杂的系统,则必须利用实验方法通过系统辩识技术来建立数学模型。数学模型是系统仿真的依据,所以,数学模型的准确性是十分重要。第三步:建立仿真模型,即通过一定算法对原系统的数学模型进行离散化处理,就连续系统言,就是建立相应的差分方程。第四步:编制仿真程序。对于非实时仿真,可用一般高级语言或仿真语言。对于快速的实时仿真,往往需要用汇编语言。第五步:进行仿真实验并输出仿真结果,即通过实验对仿真系统模型及程序进行校验和修改,然后按系统仿真的要求输出仿真结果。在仿真中涉及系统、模型与仿真三个具体部分,并且共有两次模型化。系统是被研究的
11、对象,模型是对系统的描述,仿真是通过对模型的实验以达到研究系统的目的。通常将实际系统抽象为数学模型称之为一次模型化,它涉及到系统辩识技术问题,又称为建模问题。将数学模型转化为可以在计算机上运行的仿真模型,称之为二次模型化,它涉及到仿真编程、运行、修改参数等技术,又称为系统仿真技术。1.1.4 系统建模由于控制系统的数学仿真是以其数学模型为前提的,所以对于仿真结果的可靠性来讲,系统建模至关重要,它在很大程度上决定了数学仿真实验的成败。系统建模是一项复杂而细致的工作,需要我们认真对待其过程中的每一个环节,而目的、方法、验证是建模工作中至关重要的三要素,即在建模过程中要做到目的要明确、方法要恰当、结
12、果要验证。建立控制系统的数学模型是分析和设计控制系统的前提。系统建模可以分为机理建模法、实验建模法和综合建模法。所谓机理模型实际上就是采用由一般到特殊的推理演绎方法,对已知结构、参数的物理系统运用相应的物理定律或定理,经过合理分析简化而建立起来的描述系统各物理量动、静态变化性能的数学模型。机理建模法主要是通过理论分析的推导方法建立系统模型,根据它们所依据的基本定律,如电学中的基尔霍夫定律,力学中的牛顿定律,热力学中的热力学定律等,即利用各个专门学科领域提出的物质和能量的守恒性和连续性原理,以及系统设备的结构数据推导出模型,这种方法得出的数学模型称之为理论模型或解析模型,这种建立模型的方法称之为
13、解析法。所谓实验建模法,即使采用由特殊到一般的逻辑归纳方法,根据一定数量的系统运行过程中实测、观察的物理量数据,运用统计规律、系统辨识等理论合理估计出反映系统各物理量相互制约关系的数学模型。其主要依据是来自系统的大量实测数据,因此又称之为实验测定法。在人们对其内部结构与特性有部分了解,但又难以完全用机理建模的方法来描述时,需要结合一定的实验方法确定另外一部分不甚了解的结构与特性,或者是通过实际测定来求取模型参数。这种将机理建模法与实验建模法有机结合起来的方法称之为综合建模法。1.1.5 模型验证一个系统模型能否准确而有效地描述实际系统,其应从如下两方面来检验:其一是检验系统模型能否准确地描述实
14、际系统的性能与行为;其二是检验基于系统模型的仿真实验结果与实际系统的近似程度。模型验证的基本方法有:基于机理建模的必要条件法、基于实验建模的数理统计法、实验模型验证法。所谓必要条件法,就是通过对实际系统所存在的各种特性、规律和现象(人们通过推演或经验可认识到的系统的必要性质和条件)进行仿真模拟或仿真实验,通过仿真结果与必要条件的吻合程度来验证系统模型的可信度和有效性。所谓数理统计法又称为最大概率估计法,它是数理统计学中描述一般随机状态或过程发生的可能性大小的一种数学描述。所谓实物模型验证法,就是根据相似原理运用实物(或半实物)仿真技术在可能的条件下实现最高精度的模型验证。1.2 倒立摆系统介绍
15、倒立摆是处于倒置不稳定状态、通过人为控制使其处于动态平衡的一种摆,是一个复杂的快速、非线性、多变量、强耦合、自然不稳定系统,是重心在上、支点在下控制问题的抽象。倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。最初研究开始于二十世纪50年代,麻省理工学院(MlT)的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验设备。近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从
16、而从中找出最优秀的控制方法。倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的利用开发前景。平面倒立摆可以比较真实的模拟火箭的飞行控制和步行机器人的稳定控制等方面的研究。1.2.1 倒立摆的分类倒立摆已经由原来的直线一阶倒立摆扩展出很多种类,典型的有
17、直线倒立摆,环形倒立摆,平面倒立摆和复合倒立摆等,倒立摆系统是在运动模块上装有倒立摆装置,由于在相同的运动模块上可以装载不同的倒立摆装置,倒立摆的种类由此而丰富很多。按倒立摆的阶数来分:有一阶倒立摆、两阶倒立摆、三阶倒立摆和四阶倒立摆,一阶倒立摆常用于控制理论的基础实验,多阶倒立摆常用于控制算法的研究,倒立摆的阶数越高,其控制难度更大,目前,可以实现的倒立摆控制最高为四阶倒立摆。按倒立摆的结构来分,有以下类型的倒立摆:(1)直线倒立摆(或称为“小车倒立摆系统”)直线倒立摆是在直线运动模块上装有摆体组件,直线运动模块有一个自由度,小车可以沿导轨水平运动,在小车上装载不同的摆体组件,可以组成很多类
18、别的倒立摆,直线柔性倒立摆和一般直线倒立摆的不同之处在于,柔性倒立摆有两个可以沿导轨滑动的小车,并且在主动小车和从动小车之间增加了一个弹簧,作为柔性关节。(2)环形倒立摆(或称为“转倒立摆系统”)环形倒立摆在圆周运动模块上装有摆体组件,圆周运动模块有一个自由度,可以围绕齿轮中心做圆周运动,在运动手臂末端装有摆体组件,根据摆体组件的级数和串连或并联的方式,可以组成很多形式的倒立摆。(3)平面倒立摆是在可以做平面运动的运动模块上装有摆杆组件,平面运动模块主要有两类:一类是XY运动平台,另一类是两自由度SCARA机械臂;摆体组件也有一阶、二阶、三阶和四阶很多种。(4)复合倒立摆复合倒立摆为一类新型倒
19、立摆,由运动本体和摆杆组件组成,其运动本体可以很方便的调整成三种模式,一是2)中所述的环形倒立摆,还可以把本体翻转90度,连杆竖直向下和竖直向上组成托摆和顶摆两种形式的倒立摆。1.2.2 倒立摆的特性虽然倒立摆的形式和结构各异,但所有的倒立摆都具有以下的特性:(1)非线性倒立摆是一个典型的非线性复杂系统,实际中可以通过线性化得到系统的近似模型,线性化处理后再进行控制。也可以利用非线性控制理论对其进行控制。倒立摆的非线性控制正成为一个研究的热点。(2)不确定性主要是模型误差以及机械传动间隙,各种阻力等,实际控制中一般通过减少各种误差来降低不确定性,如通过施加预紧力减少皮带或齿轮的传动误差,利用滚
20、珠轴承减少摩擦阻力等不确定因素。(3)耦合性倒立摆的各级摆杆之间,以及和运动模块之间都有很强的耦合关系,在倒立摆的控制中一般都在平衡点附近进行解耦计算,忽略一些次要的耦合量。(4)开环不稳定性倒立摆的平衡状态只有两个,即在垂直向上的状态和垂直向下的状态,其中垂直向上为绝对不稳定的平衡点,垂直向下为稳定的平衡点。(5)约束限制由于机构的限制,如运动模块行程限制,电机力矩限制等。为了制造方便和降低成本,倒立摆的结构尺寸和电机功率都尽量要求最小,行程限制对倒立摆的摆起影响尤为突出,容易出现小车的撞边现象。1.2.3 倒立摆的发展倒立摆系统的研究具有重要的理论意义和应用价值,对其控制研究是控制领域研究
21、的热门课题之一,国内外的专家学者对此给予了广泛的关注。倒立摆系统研究最早始于上世纪50年代,麻省理工学院(MIT)机电工程系的控制论专家根据火箭发射助推器原理设计出一阶倒立摆实验装置。1966年SChaefer和Cannc)n应用BangBang控制理论将一个曲轴稳定于倒置位置。其实,正式提出倒立摆概念的是60年代后期。在此基础上,世界各国专家和学者对倒立摆进行了拓展,产生了直线二阶倒立摆、三阶倒立摆、多阶倒立摆、柔性直线倒立摆、环形倒立摆、平面倒立摆、环形并联多阶倒立摆以及斜坡倒立摆等实验设备,并用不同的控制方法对其进行了控制,使研究成为了具有挑战性的课题之一。国内对倒立摆的研究始于80年代
22、,虽然起步较晚但发展迅速,取得了可喜的成果。对于一阶倒立摆和二阶倒立摆系统的研究已经历了很长的历程,并且有很多控制成功的报道。在此基础上,三阶倒立摆及多级倒立摆的研究也取得了很大进展,不仅在系统仿真方面,而且在实物实验中,都出现了控制成功的范例。尹征琦等成功的以模拟的降维观测器实现了二阶倒立摆的控制。梁任秋等针对二阶倒立摆系统给出了三种实用的数字控制器和降维观测器。1994年,北京航空航天大学教授张明廉将人工智能与自动控制理论相结合,提出“拟人智能控制理论”,实现了用单电动机控制三阶倒立摆实物以及后来实现对二维单倒立摆控制。张乃尧等用双闭环模糊控制方法对倒立摆进行了控制。李祖枢等人利用拟人智能
23、控制理论研究了二阶倒立摆的起摆和控制问题。李德毅教授利用反映语言值中蕴涵的模糊性和随机性,给出云发生器的生成算法,解释多条定性推理规则同时被激活时的不确定性推理机制,利用这种智能控制方法有效地实现了单电机控制的一、二、三阶倒立摆的多种不同动平衡姿态,显示其鲁棒性,并给出了详细试验结果。北京师范大学李洪兴教授领导的模糊系统与模糊信息研究中心暨复杂系统实时智能控制实验室采用变论域自适应模糊控制理论,分别于2001年6月和2002年8月完成了四级倒立摆系统的仿真和实物实验。朱江滨等人提出了一种基于专家系统及变步长预测控制的实时非线性系统控制方法,仿真实现了二阶倒立摆的摆起及稳定控制侧。王永等通过对多
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一阶 倒立 控制 仿真 论文

链接地址:https://www.desk33.com/p-1862053.html