等腰三角形常用辅助线专题练习含答案解析.doc
《等腰三角形常用辅助线专题练习含答案解析.doc》由会员分享,可在线阅读,更多相关《等腰三角形常用辅助线专题练习含答案解析.doc(10页珍藏版)》请在课桌文档上搜索。
1、 等腰三角形常用辅助线 专题练习(含答案)1.如图:已知,点D、E在三角形ABC的边BC上, AB=AC,AD=AE,求证:BD=CE。 证明:作AFBC,垂足为F, 则AFDE。 AB=AC,AD=AE又AFBC ,AFDE, BF=CF,DF=EF (等腰三角形底边上的高与 底边上的中线互相重合)。 BD=CE.2.如图,在三角形ABC中,AB=AC,AF平行BC于F, D是AC边上任意一点,延长BA到E,使AE=AD, 连接 DE,试判断直线AF与DE的位置关系,并说 明理由解:AFDE理由: 延长ED交BC于G, AB=AC,AE=AD B=C,E=ADE B+E=C+ADE ADE=
2、CDG B+E=C+CDG B+E=DGC,C+CDG=BGE, BGE+CGD=180BGE=CGD=90EGBC AFBC AFDE解法2:过A点作ABC底边上的高,再用BAC=D+AED=2ADE, 即CAG=AED,证明AGDE 利用AFBC证明AFDE3.如图,ABC中,BA=BC,点D是AB延长线上一点, DFAC交BC于E,求证:DBE是等腰三角形。证明:在ABC中, BA=BC, A=C, DFAC, C+FEC=90, A+D=90, FEC=D FEC=BED, BED=D, BD=BE, 即DBE是等腰三角形4. 如图,ABC中,AB=AC,E在AC上,且AD=AE,DE
3、 的延长线与BC相交于F。求证:DFBC.证明:AB=AC, B=C, 又AD=AE, D=AED,B+D=C+AED, B+D=C+CEF,EFC=BFE=1801/2 = 90, DFBC;若把“AD =AE”与结论“DFBC”互换,结论也成立。若把条件“AB=AC”与结论“DFBC”互换,结论依然成立。5. 如图,AB=AE,BC=ED, B=E,AMCD, A 求证:CM=MD.证明: 连接AC,ADAB=AE,B=E,BC=ED ABCAED(SAS)AC=ADAMCD AMC=AMD=90AM=AM (公共边) RTACMRTADM (HL)CM=DM6.如图,已知AD是ABC的中
4、线,BE交AC于F, 且AE=EF,求证:BF=AC证明:过B点做AC的平行线,交AD的延长线于G点 AD为中线,BD=CD BG平行于AC, FGB=CAF, DBG=ACD 在AFE和GFB中,FGB=CAF,GFB=AFE AFEGFB FGB=FAEAE=EF,FAE=AFEBFG=G GFB为等腰三角形,且BF=BG 在ADC和GBD中 DBG=ACD,BD=CD, BDG=CDA ADCGBD BG=ACBF=AC7.已知:如图,ABC(ABAC)中,D、E在BC上, 且DE=EC,过D点作DFBA,交AE于点F,DF=AC, 求证:AE平分BAC证明:延长AE,过D作DMAC交A
5、E延长线于M M=1,C=2 在DEM与CEA中 M=1,C=2, DE=CE DEMCEA DM=CA 又DF=CA,DM=DF,M=3 ABFD,3=4,4=1 AE平分BAC8. 已知:如图,ABC中,AB=AC,在AB上取一点D,在 延长线上取一点E,连接DE交BC于点F,若F是DE中点。求 证:BD=CE证明:过D作DFAC交BC于F, DFAC(已知), DFC=FCE,DFB=ACB(平行线的性质) AB=AC(已知), B=ACB(等边对等角), B=DFB(等量代换), BD=DF(等角对等边), BD=CE(已知), DF=CE(等量代换), DFC=FCE, DGF=CG
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 等腰三角形 常用 辅助线 专题 练习 答案 解析
![提示](https://www.desk33.com/images/bang_tan.gif)
链接地址:https://www.desk33.com/p-19135.html