变胞机构的自由度及形态变化分析.docx
《变胞机构的自由度及形态变化分析.docx》由会员分享,可在线阅读,更多相关《变胞机构的自由度及形态变化分析.docx(7页珍藏版)》请在课桌文档上搜索。
1、变胞机构的自由度及形态变化分析摘要:综述了变胞机构自由度的计算方法和变胞过程的矩阵描述理论。在自由度计算中运用了基于约束的螺旋求解法;在变胞过程的矩阵描述中介绍了邻接矩阵、变胞源机构与变胞子机构、变胞源矩阵与变胞子矩阵的概念,引入了变胞方程以及两条修正规则,阐明了矩阵法在变胞机构变胞过程中的应用过程,并通过实例分析了这两种理论。关键词:变胞;自由度;矩阵描述0 前言机构是机器的组成部分,它将输入的运动或力由一种形式转化为另一种形式。对于传统机构,其在运动和力的传递过程中有效构件数及自由度均不发生变化。但近年来研究的一类新型机构,它们在一定条件下却可以改变自身的有效构件数或自由度,从而使得对于同
2、一输入产生多种输出,拓宽了机构的应用*围,这类机构称为变胞机构。变胞机构在当今有着广泛运用,如李威等人发明的用于铝合金汽车轮毂模具修理中的快速夹紧装置1(图1)、理工大学高枫等人开发的陆空两栖球形变胞机器人2(图2)以及伦敦大学国王学院研制的变胞手等3(图3)。图1 基于变胞原理的快速夹紧装置图2 陆空两栖球形变胞机器人图3 伦敦大学国王学院研制的变胞手鉴于变胞机构的广阔应用前景,本文对变胞机构的有关理论进行了综述,主要包括变胞机构的自由度计算以及变胞机构的形态变化分析。1 变胞机构的自由度计算常见的变胞机构大多为三维空间机构,对于空间机构自由度的计算,最简单有效的方法是约束螺旋求解法,计算公
3、式为4:(1.1)这里表示机构的自由度,表示机构的阶数(,表示机构的公共约束数),表示包括机架的构件数目,表示运动副的数目,表示第个运动副的自由度,表示多环并联机构在去除公共约束因素后的冗余约束数目,表示机构中存在的局部自由度。图4 共点球面五杆变胞机构图5 共点球面四杆变胞机构图4所示是一共点球面五杆变胞机构5,图中的数字15分别表示空间中的5根杆,()表示连接第根杆与第根杆的转动副,5个转动副的轴线相交于球心。以为原点,轴沿轴线,轴沿竖直方向建立坐标系,则5个转动副对应的螺旋可表示为:则相应地存在3个反螺旋:从反螺旋可以看出,机构存在沿着三个方向的移动公共约束,即,故机构属于三阶螺旋系,此
4、外,由公式(1.1)计算自由度。在一定条件下,杆4与杆5可固连在一起,从而形成图5所示的共点球面四杆变胞机构,变胞后的4个转动副对应的螺旋可表示为:易知变胞后的机构仍具有与变胞前机构相同的3个反螺旋、,变胞后机构仍属于三阶螺旋系,此外仍有,自由度通过上述分析可以发现:该球面变胞机构在变胞前后有效构件数和自由度均发生了变化。2 变胞机构变胞过程的矩阵描述在研究变胞机构的特征时,一个重要的工具是邻接矩阵,其定义如下6:其中,为构件的数目。邻接矩阵中的每一行和每一列均对应一个构件,当构件与构件之间由运动副直接连接时,;当构件与构件之间没有运动副直接连接时,;对应构件与构件自身相连的矩阵元素被赋予零值
5、,即当时,。以图4为例,由于机构中具有5个构件,故邻接矩阵为55的方阵。因为杆1与杆2、杆2与杆3、杆3与杆4、杆4与杆5、杆5与杆1之间由转动副直接连接,故邻接矩阵中、均取1,其它元素取0,得到对应的邻接矩阵:当机构发生变胞转化为图5所示的形态后,其对应的邻接矩阵变为:由于图5对应的球面四杆机构是由图4对应的球面五杆机构转化而来,因此我们称图5的球面五杆机构是变胞源机构,其对应的邻接矩阵是变胞源矩阵;而图4的球面四杆机构是变胞子机构,其对应的邻接矩阵是变胞子矩阵7。显然,在球面五杆机构的基础上增加不同的连接关系将得到不同的变胞子机构(如将球面五杆机构中的杆1与杆3相连将得到图6所示的变胞子机
6、构,其对应的邻接矩阵为:它是不同于图5所示的球面四杆机构的)。图6 共点球面五杆变胞机构的另一种变胞子机构变胞源矩阵与变胞子矩阵之间的转化关系可以用矩阵组来实现,即(2.1)式(2.1)称为变胞机构的变胞方程,用于描述变胞源矩阵到变胞子矩阵的变胞过程。其中矩阵用于将第个构件上的连接关系转移到第个构件上,矩阵用于消去变胞合并后的构件,前乘表示对变胞源矩阵进行行操作,后乘表示对变胞源矩阵进行列操作8。仍以图4到图5的变胞过程为例,当将杆4与杆5相连时,杆5与周围各杆的连接关系将被转移到杆4上,因此需要将变胞源矩阵中第五行和第五列的元素对应加到第四行和第四列上,故容易看出是将五阶单位矩阵的第五行加到
7、第四行变化而来。连接关系转移后,杆5将不复存在,因而需要将邻接矩阵中表示杆5连接关系的第五行和第五列删除,故容易看出是在四阶单位矩阵中加入第五列全零列变化而来。将、代入变胞方程(2.1)得:结果发现经过变胞方程计算得到的初步结果与变胞子矩阵并不相等,差异在于矩阵中出现了除0、1以外的其它元素(即第四行第四列的元素2),出现这种情况的原因是杆5与杆4本来就是直接相连的,当进行矩阵组计算时,连接关系的合并导致杆4与自身连接关系的显化。因此为了使得变胞方程成立,需要引入如下的修正规则9:修正规则I:每进行一轮矩阵组计算后,若邻接矩阵元素中出现2,则将其全部以0覆盖。经过修正规则I修正的结果将与变胞子
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 机构 自由度 形态 变化 分析

链接地址:https://www.desk33.com/p-20022.html