蜗杆轴零件的加工工艺.docx
《蜗杆轴零件的加工工艺.docx》由会员分享,可在线阅读,更多相关《蜗杆轴零件的加工工艺.docx(12页珍藏版)》请在课桌文档上搜索。
1、蜗杆轴的加工工艺一、概述1 蜗杆轴类零件的功用与结构 蜗杆轴是组成机械的重要零件,也是机械加工中常见的典型零件之一。它支撑着其它转动件回转并传递扭矩,同时又通过轴承与机器的机架连接。 蜗杆轴类零件是旋转零件,其长度大于直径,由外圆柱面、圆锥面、内孔、螺纹及相应端面所组成。加工表面通常除了内外圆表面、圆锥面、螺纹、端面外,还有花键、键槽、横向孔、沟槽等。 根据功用和结构形状,蜗杆轴类有多种形式,如光轴、空心轴、半轴、阶梯轴、花键轴、偏心轴、曲轴、凸轮轴等。如图1 图1 蜗杆轴2 蜗杆轴类零件的技术要求2.1 加工精度 1)尺寸精度 蜗杆轴类零件的尺寸精度主要指轴的直径尺寸精度和轴长尺寸精度。按使
2、用要求,主要轴颈直径尺寸精度通常为IT6-IT9级,精密的轴颈也可达IT5级。轴长尺寸通常规定为公称尺寸,对于阶梯轴的各台阶长度按使用要求可相应给定公差。 2)几何精度 蜗杆轴类零件一般是用两个轴颈支撑在轴承上,这两个轴颈称为支撑轴颈,也是轴的装配基准。除了尺寸精度外,一般还对支撑轴颈的几何精度(圆度、圆柱度)提出要求。对于一般精度的轴颈,几何形状误差应限制在直径公差范围内,要求高时,应在零件图样上另行规定其允许的公差值。 3)相互位置精度 蜗杆轴类零件中的配合轴颈(装配传动件的轴颈)相对于支撑轴颈间的同轴度是其相互位置精度的普遍要求。通常普通精度的轴,配合精度对支撑轴颈的径向圆跳动一般为0.
3、01-0.03mm,高精度轴为0.001-0.005mm。 此外,相互位置精度还有内外圆柱面的同轴度,轴向定位端面与轴心线的垂直度要求等。 2.2 表面粗糙度 根据机械的精密程度,运转速度的高低,轴类零件表面粗糙度要求也不相同。一般情况下,支撑轴颈的表面粗糙度 Ra值为0.63-0.16 m ;配合轴颈的表面粗糙度Ra值为2.5-0.63m3 蜗杆轴类零件的材料和毛坯 3.1蜗杆轴类零件的材料 蜗杆轴类零件材料的选取,主要根据轴的强度、刚度、耐磨性以及制造工艺性而决定,力求经济合理。 常用的蜗杆轴类零件材料有 35、45、50优质碳素钢,以45钢应用最为广泛。对于受载荷较小或不太重要的轴也可用
4、Q235、Q255等普通碳素钢。对于受力较大,轴向尺寸、重量受限制或者某些有特殊要求的可采用合金钢。如40Cr合金钢可用于中等精度,转速较高的工作场合,该材料经调质处理后具有较好的综合力学性能;选用Cr15、65Mn等合金钢可用于精度较高,工作条件较差的情况,这些材料经调质和表面淬火后其耐磨性、耐疲劳强度性能都较好;若是在高速、重载条件下工作的蜗杆轴类零件,选用20Cr、20CrMnTi、20Mn2B等低碳钢或38CrMoA1A渗碳钢,这些港经渗碳淬火或渗氮处理后,不仅有很高的表面硬度,而且其心部强度也大大提高,因此具有良好的耐磨性、抗冲击韧性和耐疲劳强度的性能。 球墨铸铁、高强度铸铁由于铸造
5、性能好,且具有减振性能,常在制造外形结构复杂的轴中采用。特别是我国研制的稀土镁球墨铸铁,抗冲击韧性好,同时还具有减摩、吸振,对应力集中敏感性小等优点,已被应用于制造汽车、拖拉机、机床上的重要轴类零件。 3.2蜗杆轴类零件的毛坯 蜗杆轴类零件的毛坯常见的有型材(圆棒料)和锻件。大型的,外形结构复杂的轴也可采用铸件。内燃机中的曲轴一般均采用铸件毛坯。 型材毛坯分热轧或冷拉棒料,均适合于光滑轴或直径相差不大的阶梯轴。 锻件毛坯经加热锻打后,金属内部纤维组织沿表面分布,因而有较高的抗拉、抗弯及抗扭转强度,一般用于重要的轴。二、蜗杆轴加工的工艺分析 实例,图2所示为一蜗杆轴,材料选用 40Cr 钢。产品
6、属于小批量生产。图2 蜗杆轴该蜗杆轴 20j6, 17k5两外圆表面为支撑轴颈;锥体部分是装配离合器的表面;M18 1处装配圆螺母来固定轴承的轴向位置。根据外形结构其毛坯选用 50mm的圆钢(棒料),在锯床上按240mm长度下料。 1、蜗杆轴加工的工艺路线 1.1基本加工路线 外圆加工的方法很多,基本加工路线可归纳为四条。 粗车半精车精车 对于一般常用材料,这是外圆表面加工采用的最主要的工艺路线。 粗车半精车粗磨精磨 对于黑色金属材料,精度要求高和表面粗糙度值要求较小、零件需要淬硬时,其后续工序只能用磨削而采用的加工路线。 粗车半精车精车金刚石车 对于有色金属,用磨削加工通常不易得到所要求的表
7、面粗糙度,因为有色金属一般比较软,容易堵塞沙粒间的空隙,因此其最终工序多用精车和金刚石车。 粗车半精粗磨精磨光整加工 对于黑色金属材料的淬硬零件,精度要求高和表面粗糙度值要求很小,常用此加工路线。1.2 典型加工工艺路线 蜗杆轴的主要加工表面是外圆表面,也还有常见的特特形表面,因此针对各种精度等级和表面粗糙度要求,按经济精度选择加工方法。 对普通精度的蜗杆轴加工,其典型的工艺路线如下: 毛坯及其热处理预加工车削外圆铣键槽(花键槽、沟槽)热处理磨削终检。 1) 蜗杆轴的预加工 轴类零件的预加工是指加工的准备工序,即车削外圆之前的工艺。 校直 毛坯在制造、运输和保管过程中,常会发生弯曲变形,为保证
8、加工余量均匀及装夹可靠,一般冷态下在各种压力机或校值机上进行校直。2) 蜗杆轴加工的定位基准和装夹 以工件的中心孔定位 在轴的加工中,零件各外圆表面,锥孔、螺纹表面的同轴度,端面对旋转轴线的垂直度是其相互位置精度的主要项目,这些表面的设计基准一般都是轴的中心线,若用两中心孔定位,符合基准重合的原则。中心孔不仅是车削时的定为基准,也是其它加工工序的定位基准和检验基准,又符合基准统一原则。当采用两中心孔定位时,还能够最大限度地在一次装夹中加工出多个外圆和端面。 以外圆和中心孔作为定位基准(一夹一顶) 用两中心孔定位虽然定心精度高,但刚性差,尤其是加工较重的工件时不够稳固,切削用量也不能太大。粗加工
9、时,为了提高零件的刚度,可采用轴的外圆表面和一中心孔作为定位基准来加工。这种定位方法能承受较大的切削力矩,是轴类零件最常见的一种定位方法。 以两外圆表面作为定位基准 在加工空心轴的内孔时,(例如:机床上莫氏锥度的内孔加工),不能采用中心孔作为定位基准,可用轴的两外圆表面作为定位基准。当工件是机床主轴时,常以两支撑轴颈(装配基准)为定位基准,可保证锥孔相对支撑轴颈的同轴度要求,消除基准不重合而引起的误差。 以带有中心孔的锥堵作为定位基准 在加工空心轴的外圆表面时,往往还采用代中心孔的锥堵或锥套心轴作为定位基准。2、蜗杆轴的加工工艺过程2.1 外圆表面的加工方法和加工精度轴类、套类和盘类零件是具有
10、外圆表面的典型零件。外圆表面常用的机械加工方法有车削、磨削和各种光整加工方法。车削加工是外圆表面最经济有效的加工方法,但就其经济精度来说,一般适于作为外圆表面粗加工和半精加工方法;磨削加工是外圆表面主要精加工方法,特别适用于各种高硬度和淬火后的零件精加工;光整加工是精加工后进行的超精密加工方法(如滚压、抛光、研磨等),适用于某些精度和表面质量要求很高的零件。 由于各种加工方法所能达到的经济加工精度、表面粗糙度、生产率和生产成本各不相同,因此必须根据具体情况,选用合理的加工方法,从而加工出满足零件图纸上要求的合格零件。 表1为外圆表面各种加工方案和经济加工精度。 序号 加工方法经济精度(公差等级
11、)经济粗糙度 Ra值/ m适用范围1粗车IT13-IT1150-12.5适用于淬火钢以外的各种金属2粗车 -半精车IT10-IT86.3-3.23粗车 -半精车-精车IT8-IT71.6-0.84粗车 -半精车-精车-滚压IT8-IT70.2-0.0255粗车 -半精车-磨削IT8-IT70.8-0.4主要用于淬火钢,也可用于未淬火钢 6粗车 -半精车-粗磨-精磨IT7-IT60.4-0.17粗车 -半精车-粗磨-精磨-超精加工(或轮式超精磨)IT50.1-0.0128粗车 -半精车-精车-精细车(金刚车)IT7-IT60.4-0.025主要用于要求较高的有色金属9粗车 -半精车-粗磨-精磨-
12、超精磨(或镜面磨)IT5以上0.025-0.006极高精度的外圆加工10粗车 -半精车-粗磨-精磨-研磨IT5以上Rz0.1 表12.2外圆表面的车削加工 (1)外圆车削的形式 轴类零件外圆表面的主要加工方法是车削加工。主要的加工形式有: 1)荒车 自由锻件和大型铸件的毛坯,加工余量很大,为了减少毛坯外圆形状误差和位置偏差,使后续工序加工余量均匀,以去除外表面的氧化皮为主的外圆加工,一般切除余量为单面1-3mm。 2)粗车 中小型锻、铸件毛坯一般直接进行粗车。粗车主要切去毛坯大部分余量(一般车出阶梯轮廓),在工艺系统刚度容许的情况下,应选用较大的切削用量以提高生产效率。 3)半精车 一般作为中
13、等精度表面的最终加工工序,也可作为磨削和其它加工工序的预加工。对于精度较高的毛坯,可不经粗车,直接半精车。4)精车 外圆表面加工的最终加工工序和光整加工前的预加工。 5)精细车 高精度、细粗糙度表面的最终加工工序。适用于有色金属零件的外圆表面加工,但由于有色金属不宜磨削,所以可采用精细车代替磨削加工。 但是,精细车要求机床精度高,刚性好,传动平稳,能微量进给,无爬行现象。车削中采用金刚石或硬质合金刀具,刀具主偏角选大些( 45 o -90 o ),刀具的刀尖圆弧半径小于0.1-1.0mm,以减少工艺系统中弹性变形及振动。 (2)车削方法的应用 1)普通车削 适用于各种批量的轴类零件外圆加工,应
14、用十分广泛。单件小批量常采用卧室车床完成车削加工;中批、大批生产则采用自动、半自动车床和专用车床完成车削加工。 2)数控车削 适用于单件小批和中批生产。近年来应用愈来愈普遍,其主要优点为柔性好,更换加工零件时设备调整和准备时间短;加工时辅助时间少,可通过优化切削参数和适应控制等提高效率;加工质量好,专用工夹具少,相应生产准备成本低;机床操作技术要求低,不受操作工人的技能、视觉、精神、体力等因素的影响。对于轴类零件,具有以下特征适宜选用数控车削。 结构或形状复杂,普通加工操作难度大,工时长,加工效率低的零件。 加工精度一致性要求较高的零件。 切削条件多变的零件,如零件由于形状特点需要切槽,车孔,
15、车螺纹等,加工中要多次改变切削用量。 批量不大,但每批品种多变并有一定复杂程度的零件。 对带有键槽,径向孔(含螺钉孔)、端面有分布的孔(含螺钉孔)系的蜗杆轴类零件,如带法兰的轴,带键槽或方头的轴,还可以在车削加工中心上加工,除了能进行普通数控车削外,零件上的各种槽、孔(含螺钉孔)、面等加工表面也可一并能加工完毕。工序高度集中,其加工效率较普通数控车削更高,加工精度也更为稳定可靠。2.3 外圆表面的磨削加工 (1)外圆表面磨削的工艺范围 用磨具以较高的线速度对工件表面进行加工的方法称为磨削。磨削加工是一种多刀多刃的高速切削方法,它使用于零件精加工和硬表面的加工。 磨削的工艺范围很广,可以划分为粗
16、磨、精磨、细磨及镜面磨。 磨削加工采用的磨具(或磨料)具有颗粒小,硬度高,耐热性好等特点,因此可以加工较硬的金属材料和非金属材料,如淬硬钢、硬质合金道具、陶瓷等;加工过程中同时参与切削运动的颗粒多,能切除极薄极细的切屑,因而加工精度高,表面粗糙度值小。磨削加工作为一种精加工方法,在生产中得到广泛的应用。目前,由于强力磨削的发展,也可直接将毛坯磨削到所需要的尺寸和精度,从而获得了较高的生产率。 (2)外圆表面磨削的常用方法 1)纵磨法 砂轮高速旋转起切削作用,工件旋转作圆周进给运动,并和工作台一起作纵向往复直线进给运动。工作台每往复一次,砂轮沿磨削深度方向完成一次横向进给,每次进给(吃刀深度)都
17、很小,全部磨削余量是在多次往复行程中完成的。当工件磨削接近最终尺寸时(尚有余量0.005-0.01mm),应无横向进给光磨几次,直到火花消失为止。纵磨法加工精度和表面质量较高,适应性强,用同一砂轮可磨削直径和长度不同的工件,但生产率低。在单件、小批量生产及精磨中应用广泛,特别适用于磨削细长轴等刚性差的工件。 2)横磨法(切入法) 工件不作纵向往复运动,砂轮以缓慢的速度连续或间断地向工件作横向进给运动,直到磨去全部余量。横磨时,工件与砂轮的接触面积大,磨削力大,发热量大而集中,所以易发生工件变形、烧刀和退火。横磨法生产效率高,适用于成批或大量生产中,磨削长度短、刚性好、精度低的外圆表面及两侧都有
18、台肩的轴径。若将砂轮修整成型,也可直接磨削成型面。 3)综合磨法 先用横磨法将工件分段进行粗磨,相邻之间有5-15mm搭接,每段上留有0.01-0.03mm的精磨余量,精磨时采用纵磨法。这种磨削方法综合了纵磨和横磨的优点,适用于磨削余量较大(余量0.7-0.6mm)的工件。 4)深磨法 磨削时采用较小的纵向进给量( 1-2mm/r)和较大的吃刀深度(0.2-0.6mm)在一次走刀中磨去全部余量。为避免切削负荷集中和砂轮外圆棱角迅速磨钝,应将砂轮修整成锥形或台阶形,外径小的台阶起粗磨作用,可修粗些;外径大的起精磨作用,修细些。深磨法可获得较高的精度和生产率,表面粗糙度值较小,适用于大批量生产中,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 蜗杆 零件 加工 工艺

链接地址:https://www.desk33.com/p-20326.html