双曲线知识点和性质大全.doc
《双曲线知识点和性质大全.doc》由会员分享,可在线阅读,更多相关《双曲线知识点和性质大全.doc(10页珍藏版)》请在课桌文档上搜索。
1、双曲线与方程【知识梳理】1、双曲线的定义(1)平面内,到两定点、的距离之差的绝对值等于定长的点的轨迹称为双曲线,其中两定点、称为双曲线的焦点,定长称为双曲线的实轴长,线段的长称为双曲线的焦距.此定义为双曲线的第一定义.【注】,此时点轨迹为两条射线.(2)平面内,到定点的距离与到定直线的距离比为定值的点的轨迹称为双曲线,其中定点称为双曲线的焦点,定直线称为双曲线的准线,定值称为双曲线的离心率.此定义为双曲线的第二定义.2、双曲线的简单性质标准方程顶点坐标焦点坐标左焦点,右焦点上焦点,下焦点虚轴与虚轴实轴长、虚轴长实轴长、虚轴长有界性,对称性关于轴对称,关于轴对称,同时也关于原点对称.3、渐近线双
2、曲线的渐近线为,即,或.【注】与双曲线具有相同渐近线的双曲线方程可以设为;渐近线为的双曲线方程可以设为;共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫做原双曲线的共轭双曲线.共轭双曲线具有相同的渐近线.等轴双曲线:实轴与虚轴相等的双曲线称为等轴双曲线.4、焦半径双曲线上任意一点到双曲线焦点的距离称为焦半径.若为双曲线上的任意一点,为双曲线的左、右焦点,则,其中.5、通径过双曲线焦点作垂直于虚轴的直线,交双曲线于、两点,称线段为双曲线的通径,且.6、焦点三角形为双曲线上的任意一点,为双曲线的左右焦点,称为双曲线的焦点三角形.若,则焦点三角形的面积为:.7、双曲线的焦点到渐近线的距离为
3、(虚半轴长).8、双曲线的焦点三角形的内心的轨迹为9、直线与双曲线的位置关系直线,双曲线:,则与相交;与相切;与相离.10、平行于(不重合)渐近线的直线与双曲线只有一个交点.【注】过平面内一定点作直线与双曲线只有一个交点,这样的直线可以为4条、3条、2条,或者0条.11、焦点三角形角平分线的性质点是双曲线上的动点,是双曲线的焦点,是的角平分线上一点,且,则,即动点的点的轨迹为.12、双曲线上任意两点的坐标性质为双曲线上的任意两点,且,则.【推广1】直线过双曲线的中心,与双曲线交于两点,为双曲线上的任意一点,则(均存在).【推广2】设直线交双曲线于两点,交直线于点若为的中点,则.13、中点弦的斜
4、率直线过与双曲线交于两点,且,则直线的斜率.14、点是双曲线上的动点,过作实轴的平行线,交渐近线于两点,则定值.15、点是双曲线上的动点,过作渐近线的平行线,交渐近线于两点,则定值.【典型例题】例1、双曲线的渐近线方程为,焦距为,这双曲线的方程为_.【变式1】若曲线表示双曲线,则的取值X围是_.【变式2】双曲线的两条渐近线的夹角为_.【变式3】已知椭圆和双曲线有公共的焦点,那么双曲线的渐近线方程为_.【变式4】若椭圆和双曲线有相同焦点、,为两曲线的一个交点,则_.【变式5】如果函数的图像与曲线恰好有两个不同的公共点,则实数的取值X围是( )AB. C. D.【变式6】直线与双曲线的渐近线交于两
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 双曲线 知识点 性质 大全

链接地址:https://www.desk33.com/p-22784.html