生物数学模型第一讲数学模型与生物数学.ppt
《生物数学模型第一讲数学模型与生物数学.ppt》由会员分享,可在线阅读,更多相关《生物数学模型第一讲数学模型与生物数学.ppt(26页珍藏版)》请在课桌文档上搜索。
1、1 数学模型与生物数学,1.1 从现实对象到数学模型1.2 数学建模的重要意义1.3 数学建模示例:药物中毒施救1.4 数学建模的基本方法和步骤1.5 数学模型的特点和分类1.6 生物数学模型的内涵与分支,玩具、照片、飞机、火箭模型,实物模型,水箱中的舰艇、风洞中的飞机,物理模型,地图、电路图、分子结构图,符号模型,模型是为了一定目的,对客观事物的一部分进行简缩、抽象、提炼出来的原型的替代物.,模型集中反映了原型中人们需要的那一部分特征.,1.1 从现实对象到数学模型,我们常见的模型,你碰到过的数学模型“航行问题”,用 x 表示船速,y 表示水速,列出方程:,答:船速为20km/h.,甲乙两地
2、相距750km,船从甲到乙顺水航行需30h,从乙到甲逆水航行需50h,问船的速度是多少?,x=20y=5,航行问题建立数学模型的基本步骤,作出简化假设(船速、水速为常数),用符号表示有关量(x,y分别表示船速和水速),用物理定律(匀速运动的距离等于速度乘以 时间)列出数学式子(二元一次方程),求解得到数学解答(x=20,y=5),回答原问题(船速为20km/h),数学模型(Mathematical Model)和数学建模(Mathematical Modeling),对于一个现实对象,为了一个特定目的,根据其内在规律,作出必要的简化假设,运用适当的数学工具,得到的一个数学表述.,建立数学模型的
3、全过程(包括表述、求解、解释、检验等),数学模型,数学建模,1.2 数学建模的重要意义,电子计算机的出现及飞速发展.,数学以空前的广度和深度向一切领域渗透.,数学建模作为用数学方法解决实际问题的第一步,越来越受到人们的重视.,在一般工程技术领域,数学建模仍然大有用武之地.,在高新技术领域,数学建模几乎是必不可少的工具.,数学进入一些新领域,为数学建模开辟了许多处女地.,“数学是一种关键的、普遍的、可以应用的技术”.,数学“由研究到工业领域的技术转化,对加强经济竞争力具有重要意义”.,“计算和建模重新成为中心课题,它们是数学科学技术转化的主要途径”.,数学建模的重要意义,数学建模的具体应用,分析
4、与设计,预报与决策,控制与优化,规划与管理,数学建模,计算机技术,知识经济,场景,如何施救药物中毒,两位家长带着孩子急匆匆来到医院急诊室.,诉说两小时前孩子一次误吞下11片治疗哮喘病、剂量100mg/片的氨茶碱片,已出现呕吐、头晕等不良症状.,按照药品使用说明书,氨茶碱的每次用量成人是100200mg,儿童是35 mg/kg.,过量服用可使血药浓度(单位血液容积中的药量)过高,100g/ml浓度会出现严重中毒,200g/ml浓度可致命.,医生需要判断:孩子的血药浓度会不会达到100200 g/ml;如果会达到,应采取怎样的紧急施救方案.,1.3 数学建模示例,调查与分析,转移率正比于x,排除率
5、正比于y,认为血液系统内药物的分布,即血药浓度是均匀的,可以将血液系统看作一个房室,建立“一室模型”.,药量x(t),药量y(t),血液系统对药物的吸收率(胃肠道到血液系统的转移率)和排除率可以由半衰期确定.,半衰期可以从药品说明书上查到.,通常,血液总量约为人体体重的7%8%,体重5060 kg的成年人有4000ml左右的血液.,目测这个孩子的体重约为成年人的一半,可认为其血液总量约为2000ml.,调查与分析,血药浓度=药量/血液总量,口服活性炭来吸附药物,可使药物的排除率增加到原来(人体自身)的2倍.,临床施救的办法:,体外血液透析,药物排除率可增加到原来的6倍,但是安全性不能得到充分保
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 生物 数学模型 第一 数学

链接地址:https://www.desk33.com/p-233429.html