【医学英文课件】《生物医学信号处理(双语)》精品课件.ppt
《【医学英文课件】《生物医学信号处理(双语)》精品课件.ppt》由会员分享,可在线阅读,更多相关《【医学英文课件】《生物医学信号处理(双语)》精品课件.ppt(62页珍藏版)》请在课桌文档上搜索。
1、1,Chapter 4:Sampling of Continuous-Time Signals,4.0 Introduction4.1 Periodic Sampling4.2 Frequency-Domain Representation of Sampling4.3 Reconstruction of a Bandlimited Signal from its Samples4.4 Discrete-Time Processing of Continuous-Time signals4.5 Continuous-time Processing of Discrete-Time Signal
2、,and the subsequent reconstruction of a continuous-time signal.,2,4.0 Introduction,Continuous-time signal processing can be implemented through a process of sampling,f=1/T:sampling frequency,T:sampling period,discrete-time processing,3,4.1 Periodic Sampling,Continuous-time signal,Sampling sequence,U
3、nit impulse train,impulse train sampling,t,T:sampling period,n,冲激串序列,4,T:sample period;fs=1/T:sample rate;s=2/T:sample rate,s(t)为冲激串序列,可展开傅立叶级数,冲激串的傅立叶变换:,5,4.2 Frequency-Domain Representation of Sampling,Representation of in terms of,6,4.2 Frequency-Domain Representation of Sampling,Representation
4、of in terms of,7,DTFT,Representation of in terms of,采样角频率,rad/s,连续时间傅里叶变换和离散时间傅里叶变换间的联系,在奥本海姆的信号与系统教材里,在“第7章 采样”内容之前,连续时间傅里叶变换X(j),和离散时间傅里叶变换X(ej)中涉及的频率都用相同的频率符号表示,没有加以区分,各说各话。,8,但要注意频率的单位,一个是rad/s,另一个无单位;另外,频率高低与取值范围的关系:连续时间傅里叶变换X(j)中的值越大,频率越高;但是离散时间傅里叶变换X(ej)中的值越大,频率却未必越高:X(ej)中的的值是的奇数倍的时候,表示频率最高;
5、的值是的偶数倍的时候,表示频率最低。另外注意连续时间和离散时间的傅里叶变换是否具有周期性:X(ej)具有周期性,周期2。X(j)不具有周期性。,9,奥本海姆 信号与系统在“第7章 采样”的“7.4 Discrete-Time Processing of Continuous-time Signals”一节中,因对连续时间信号xc(t)进行采样(得到xdn),在分析频谱时需要同时涉及到连续时间信号的傅里叶变换和离散时间序列的傅里叶变换。,这是两种不同的傅里叶变换,需加以区分(如下所示:是数字频率,是模拟频率)。因为两种傅里叶变换的频谱特性,特别是随频率变化而变化的特性,如上页所述,表现各有特点,
6、有相似的地方,也有截然不同之处。,连续时间傅里叶变换和离散时间傅里叶变换间的联系,(在535页的最后一段中开始)特别将两种傅里叶变换中的频率符号加以区分(仅7.4一节,其他章节没有区分):,10,因为采样,两种不同的傅里叶变换联系起来了,不但两种变换的变换结果可建立起表达式关系,而且其各自变换的自变量频率之间也有表达式关系:=T,是数字频率,是模拟频率。,连续时间傅里叶变换和离散时间傅里叶变换间的联系,也就是说两种变换的频率含义并非完全相同,而是既区别又有联系。也恰恰是因为采样的缘故,建立起了两种变换的频率之间的表达式关系:=T。,信号与系统第7章7.4节中的538页最上面一段中解释了=T的比
7、例关系:用“4.3-5 Time and Frequency Scaling”性质解释。,11,奥本海姆 信号与系统在“第7章 采样”的“7.4 Discrete-Time Processing of Continuous-time Signals”一节中,两种傅里叶变换的表示方法:,这与奥本海姆离散时间信号处理教材中用的频率符号正好相反(该教材中数字频率=T,是模拟频率):,连续时间傅里叶变换和离散时间傅里叶变换间的联系,12,Representation of in terms of,Continuous FT,of Sampling,DTFT,DTFT,without Aliasing,
8、13,DTFT,Representation of in terms of,Continuous FT,14,Representation of X(ej)in terms of Xc(j),Aliasing,15,DTFT,Representation of in terms of,Continuous FT,of Sampling,16,Nyquist Sampling Theorem,Let be a bandlimited signal with.,The frequency is commonly referred as the Nyquist frequency.,The freq
9、uency is called the Nyquist rate,which is the minimum sampling rate(frequency).,Then is uniquely determined by its samples,if.,without Aliasing,17,No aliasing,满足采样定理条件,无频率混叠,18,aliasing,不满足采样定理条件,aliasing frequency,19,No aliasing,aliasing,20,Example 4.1:Sampling and Reconstruction of a sinusoidal si
10、gnal,Solution:,Compare the continuous-time and discrete-time FTs for sampled signal,21,Example 4.1:Sampling and Reconstruction of a sinusoidal signal,continuous-time FT of,discrete-time FT of,从积分(相同的面积)或冲击函数的定义可证,Compare the continuous-time and discrete-time FTs for sampled signal,23,Ex.4.2:Aliasing
11、 in sampling an sinusoidal signal,Solution:,Example 4.2:Aliasing in the Reconstruction of an Undersampled sinusoidal signal,continuous-time FT of,discrete-time FT of,24,Ex.4.2:Aliasing in sampling an sinusoidal signal,continuous-time FT of,discrete-time FT of,25,低通滤波器,26,Gain:T,4.3 Reconstruction of
12、 a Bandlimited Signal from its Samples,27,低通滤波器Gain:T,4.3 Reconstruction of a Bandlimited Signal from its Samples,28,Gain:T,4.3 Reconstruction of a Bandlimited Signal from its Samples,CTFT,DTFT,29,4.3 Reconstruction of a Bandlimited Signal from its Samples,CTFT,DTFT,重建原信号,只要满足Qs 2QN,30,4.3 Reconstru
13、ction of a Bandlimited Signal from its Samples:关于重建表达式的理解:,the ideal lowpass filter interpolates between the impulses of xs(t).,30,即可完全重建原信号。,只要满足Qs 2QN,采样,重建,重建过程,卷积,滤波,31,4.4 Discrete-Time Processing of Continuous-Time signals,32,4.4 Discrete-Time Processing of Continuous-Time signals,33,C/D Conve
14、rter,Output of C/D Converter,34,D/C Converter,Output of D/C Converter,35,4.4.1 LTI DT Systems,Is the system Linear Time-Invariant?,即采样时无频率混叠.,采样频率,36,Linear and Time-Invariant,Linear and time-invariant behavior of the system of Fig.4.10 depends on two factors:Firstly,the discrete-time system must be
15、 linear and time invariant.Secondly,the input signal must be bandlimited,and the sampling rate must be high enough to satisfy Nyquist Sampling Theorem.(避免频率混叠),37,This is the effective frequency response of the overall LTI continuous-time system.,等效的连续时间系统必须是带限的.,38,Example 4.3 bulid a Ideal Continu
16、ous-Time Lowpass Filtering using a Discrete-Time Filter,LTI DT System,LTI CT System,-,Given,Solution:,39,Example 4.3 Ideal Continuous-Time Lowpass Filtering using a Discrete-Time Filter,interpretation of how this effective response is achieved.?,Figure,4-12,40,Example 4.3 Ideal Continuous-Time Lowpa
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 医学英文课件 生物医学信号处理双语 医学 英文 课件 生物医学 信号 处理 双语 精品
链接地址:https://www.desk33.com/p-245899.html