智能化时代的大数据.ppt
《智能化时代的大数据.ppt》由会员分享,可在线阅读,更多相关《智能化时代的大数据.ppt(27页珍藏版)》请在课桌文档上搜索。
1、大数据,大数据引领我们走向数据智能化时代,Big Data,目录,一,Dada大,大数据的定义理解,大数据的“4V”特征,大数据时代的背景,大数据时代的背景,21世纪是数据信息大发展的时代,移动互联、社交网络、电子商务等极大拓展了互联网的边界和应用范围,各种数据正在迅速膨胀并变大。互联网(社交、搜索、电商)、移动互联网(微博)、物联网(传感器,智慧地球)、车联网、GPS、医学影像、安全监控、金融(银行、股市、保险)、电信(通话、短信)都在疯狂产生着数据。,“大数据”的诞生:半个世纪以来,随着计算机技术全面融入社会生活,信息爆炸已经积累到了一个开始引发变革的程度。它不仅使世界充斥着比以往更多的信
2、息,而且其增长速度也在加快。信息爆炸的学科如天文学和基因学,创造出了“大数据”这个概念*。如今,这个概念几乎应用到了所有人类智力与发展的领域中。,20世纪90年代,数据仓库之父的Bill Inmon就经常提及Big Data,2011年5 月,在“云计算相遇大数据”为主题的EMC World 2011 会议中,EMC 抛出了Big Data概念,Big Data名词由来,全球每秒钟发送 2.9 百万封电子邮件,一分钟读一篇的话,足够一个人昼夜不息的读5.5 年每天会有 2.88 万个小时的视频上传到Youtube,足够一个人昼夜不息的观看3.3 年推特上每天发布 5 千万条消息,假设10 秒钟
3、浏览一条信息,这些消息足够一个人昼夜不息的浏览16 年每天亚马逊上将产生 6.3 百万笔订单每个月网民在Facebook 上要花费7 千亿分钟,被移动互联网使用者发送和接收的数据高达1.3EBGoogle 上每天需要处理24PB 的数据,新的时代,人们从信息的被动接受者变成了主动创造者,大数据时代到来,大量新数据源的出现则导致了非结构化、半结构化数据爆发式的增长,大数据时代到来,大数据的4V特征,“大量化(Volume)、多样化(Variety)、快速化(Velocity)、价值密度低(Value)”就是“大数据”的显著特征,或者说,只有具备这些特点的数据,才是大数据。,体量Volume,多样
4、性Variety,价值密度Value,速度Velocity,非结构化数据的超大规模和增长总数据量的8090%比结构化数据增长快10倍到50倍是传统数据仓库的10倍到50倍,大数据的异构和多样性很多不同形式(文本、图像、视频、机器数据)无模式或者模式不明显不连贯的语法或句义,大量的不相关信息对未来趋势与模式的可预测分析深度复杂分析(机器学习、人工智能Vs传统商务智能(咨询、报告等),实时分析而非批量式分析数据输入、处理与丢弃立竿见影而非事后见效,大数据的构成,大数据=海量数据+复杂类型的数据,海量交易数据:企业内部的经营交易信息主要包括联机交易数据和联机分析数据,是结构化的、通过关系数据库进行管
5、理和访问的静态、历史数据。通过这些数据,我们能了解过去发生了什么。,大数据包括:交易数据和交互数据集在内的所有数据集,海量交互数据:源于Facebook、Twitter、LinkedIn及其他来源的社交媒体数据构成。它包括了呼叫详细记录CDR、设备和传感器信息、GPS和地理定位映射数据、通过管理文件传输Manage File Transfer协议传送的海量图像文件、Web文本和点击流数据、科学信息、电子邮件等等。可以告诉我们未来会发生什么。,海量数据处理:大数据的涌现已经催生出了设计用于数据密集型处理的架构。例如具有开放源码、在商品硬件群中运行的Apache Hadoop。,大数据要解决的问题
6、,Volume海量的数据规模,Variety多样的数据类型,Value,Velocity快速的数据流转,巨大的数据价值,二,大数据时代的背景,相关技术,相关技术,相关技术,大数据技术将被设计用于在成本可承受(economically)的条件下,通过非常快速(velocity)的采集、发现和分析,从大量化(volumes)、多类别(variety)的数据中提取价值(value),将是IT 领域新一代的技术与架构,什么是Big Data技术,分析技术:数据处理:自然语言处理技术统计和分析:A/B test;top N排行榜;地域占比;文本情感分析数据挖掘:关联规则分析;分类;聚类模型预测:预测模型
7、;机器学习;建模仿真大数据技术:数据采集:ETL工具数据存取:关系数据库;NoSQL;SQL等基础架构支持:云存储;分布式文件系统等计算结果展现:云计算;标签云;关系图等,一些相关技术,存储结构化数据:海量数据的查询、统计、更新等操作效率低非结构化数据图片、视频、word、pdf、ppt等文件存储不利于检索、查询和存储半结构化数据转换为结构化存储按照非结构化存储,解决方案:Hadoop(MapReduce技术)流计算(twitter的storm和yahoo!的S4),技术领域的挑战,1、对现有数据库管理技术的挑战传统的数据库部署不能处理数TB 级别的数据,也不能很好的支持高级别的数据分析。急速
8、膨胀的数据体量即将超越传统数据库的管理能力。如何构建全球级的分布式数据库(Globally-Distributed Database),可以扩展到数百万的机器,数已百计的数据中心,上万亿的行数据。2、经典数据库技术并没有考虑数据的多类别(variety)SQL(结构化数据查询语言),在设计的一开始是没有考虑非结构化数据的。3、实时性的技术挑战:一般而言,像数据仓库系统、BI应用,对处理时间的要求并不高。因此这类应用往往运行1、2天获得结果依然可行的。但实时处理的要求,是区别大数据应用和传统数据仓库技术、BI技术的关键差别之一。,网络架构、数据中心、运维的挑战:,技术架构的挑战:,人们每天创建的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 智能化 时代 数据
链接地址:https://www.desk33.com/p-256921.html