表面物理化学课件.ppt
《表面物理化学课件.ppt》由会员分享,可在线阅读,更多相关《表面物理化学课件.ppt(172页珍藏版)》请在课桌文档上搜索。
1、第十二章 界面现象,物理化学电子教案,2023/3/31,第十二章 界面现象,表面吉布斯自由能和表面张力,弯曲表面下的附加压力和蒸汽压,液体界面的性质,不溶性表面膜,液-固界面现象,表面活性剂及其作用,固体表面的吸附,2023/3/31,本章基本要求,2023/3/31,12.1 表面吉布斯自由能和表面张力,表面和界面,界面现象的本质,比表面,分散度与比表面,表面功,表面自由能,表面张力,界面张力与温度的关系,影响表面张力的因素,2023/3/31,表面和界面(surface and interface),界面是指两相接触的约几个分子厚度的过渡区,若其中一相为气体,这种界面通常称为表面。,常见
2、的界面有:气-液界面,气-固界面,液-液界面,液-固界面,固-固界面。,严格讲表面应是液体和固体与其饱和蒸气之间的界面,但习惯上把液体或固体与空气的界面称为液体或固体的表面。,2023/3/31,表面和界面(surface and interface),常见的界面有:,1.气-液界面,2023/3/31,表面和界面(surface and interface),2.气-固界面,2023/3/31,表面和界面(surface and interface),3.液-液界面,2023/3/31,表面和界面(surface and interface),4.液-固界面,2023/3/31,表面和界面(
3、surface and interface),5.固-固界面,2023/3/31,界面现象的本质,对于单组分体系,这种特性主要来自于同一物质在不同相中的密度不同;对于多组分体系,则特性来自于界面层的组成与任一相的组成均不相同。,表面层分子与内部分子相比,它们所处的环境不同。,体相内部分子所受四周邻近相同分子的作用力是对称的,各个方向的力彼此抵销;,但是处在界面层的分子,一方面受到体相内相同物质分子的作用,另一方面受到性质不同的另一相中物质分子的作用,其作用力未必能相互抵销,因此,界面层会显示出一些独特的性质。,2023/3/31,界面现象的本质,最简单的例子是液体及其蒸气组成的表面。,液体内部
4、分子所受的力可以彼此抵销,但表面分子受到体相分子的拉力大,受到气相分子的拉力小(因为气相密度低),所以表面分子受到被拉入体相的作用力。,这种作用力使表面有自动收缩到最小的趋势,并使表面层显示出一些独特性质,如表面张力、表面吸附、毛细现象、过饱和状态等。,2023/3/31,界面现象的本质,2023/3/31,比表面(specific surface area),比表面通常用来表示物质分散的程度,有两种常用的表示方法:一种是单位质量的固体所具有的表面积;另一种是单位体积固体所具有的表面积。即:,式中,m和V分别为固体的质量和体积,A为其表面积。目前常用的测定表面积的方法有BET法和色谱法。,20
5、23/3/31,分散度与比表面,把物质分散成细小微粒的程度称为分散度。把一定大小的物质分割得越小,则分散度越高,比表面也越大。,例如,把边长为1cm的立方体1cm3逐渐分割成小立方体时,比表面增长情况列于下表:,2023/3/31,分散度与比表面,从表上可以看出,当将边长为10-2m的立方体分割成10-9m的小立方体时,比表面增长了一千万倍。,可见达到nm级的超细微粒具有巨大的比表面积,因而具有许多独特的表面效应,成为新材料和多相催化方面的研究热点。,2023/3/31,表面功(surface work),式中 为比例系数,它在数值上等于当T,P及组成恒定的条件下,增加单位表面积时所必须对体系
6、做的可逆非膨胀功。,由于表面层分子的受力情况与本体中不同,因此如果要把分子从内部移到界面,或可逆的增加表面积,就必须克服体系内部分子之间的作用力,对体系做功。,温度、压力和组成恒定时,可逆使表面积增加dA所需要对体系作的功,称为表面功。用公式表示为:,2023/3/31,表面自由能(surface free energy),由此可得:,考虑了表面功,热力学基本公式中应相应增加 dA一项,即:,2023/3/31,表面自由能(surface free energy),广义的表面自由能定义:,狭义的表面自由能定义:,保持温度、压力和组成不变,每增加单位表面积时,Gibbs自由能的增加值称为表面Gi
7、bbs自由能,或简称表面自由能或表面能,用符号 或 表示,单位为Jm-2。,保持相应的特征变量不变,每增加单位表面积时,相应热力学函数的增值。,2023/3/31,表面张力(surface tension),在两相(特别是气-液)界面上,处处存在着一种张力,它垂直与表面的边界,指向液体方向并与表面相切。,将一含有一个活动边框的金属线框架放在肥皂液中,然后取出悬挂,活动边在下面。由于金属框上的肥皂膜的表面张力作用,可滑动的边会被向上拉,直至顶部。,把作用于单位边界线上的这种力称为表面张力,用g 表示,单位是Nm-1。,2023/3/31,表面张力(surface tension),如果在活动边框
8、上挂一重物,使重物质量W2与边框质量W1所产生的重力F(F=(W1+W2)g)与总的表面张力大小相等方向相反,则金属丝不再滑动。,这时,l是滑动边的长度,因膜有两个面,所以边界总长度为2l,就是作用于单位边界上的表面张力。,2023/3/31,表面张力(surface tension),2023/3/31,表面张力(surface tension),如果在金属线框中间系一线圈,一起浸入肥皂液中,然后取出,上面形成一液膜。,(a),(b),由于以线圈为边界的两边表面张力大小相等方向相反,所以线圈成任意形状可在液膜上移动,见(a)图。,如果刺破线圈中央的液膜,线圈内侧张力消失,外侧表面张力立即将线
9、圈绷成一个圆形,见(b)图,清楚的显示出表面张力的存在。,2023/3/31,表面张力(surface tension),(a),(b),2023/3/31,界面张力与温度的关系,温度升高,界面张力下降,当达到临界温度Tc时,界面张力趋向于零。这可用热力学公式说明:,因为,运用全微分的性质,可得:,等式左方为正值,因为表面积增加,熵总是增加的。所以 随T的增加而下降。,2023/3/31,界面张力与温度的关系,Ramsay和Shields提出的 与T的经验式较常用:,Vm2/3=k(Tc-T-6.0),式中Vm为摩尔体积,k为普适常数,对非极性液体,k=2.210-7 JK-1。,2023/3
10、/31,影响表面张力的因素,(1)分子间相互作用力的影响,(2)温度的影响,温度升高,表面张力下降。,(3)压力的影响,表面张力一般随压力的增加而下降。因为压力增加,气相密度增加,表面分子受力不均匀性略有好转。另外,若是气相中有别的物质,则压力增加,促使表面吸附增加,气体溶解度增加,也使表面张力下降。,对纯液体或纯固体,表面张力决定于分子间形成的化学键能的大小,一般化学键越强,表面张力越大。,(金属键)(离子键)(极性共价键)(非极性共价键),两种液体间的界面张力,界于两种液体表面张力之间。,2023/3/31,12.2 弯曲表面下的附加压力与蒸气压,Young-Laplace公式,Klvin
11、公式,2023/3/31,弯曲表面下的附加压力,1.在平面上,剖面图,液面正面图,研究以AB为直径的一个环作为边界,由于环上每点的两边都存在表面张力,大小相等,方向相反,所以没有附加压力。,设向下的大气压力为Po,向上的反作用力也为Po,附加压力Ps等于零。,Ps=Po-Po=0,2023/3/31,弯曲表面下的附加压力,(2)在凸面上:,剖面图,附加压力示意图,研究以AB为弦长的一个球面上的环作为边界。由于环上每点两边的表面张力都与液面相切,大小相等,但不在同一平面上,所以会产生一个向下的合力。,所有的点产生的总压力为Ps,称为附加压力。凸面上受的总压力为:Po+PsPo为大气压力,Ps为附
12、加压力。,2023/3/31,弯曲表面下的附加压力,(3)在凹面上:,研究以AB为弦长的一个球形凹面上的环作为边界。由于环上每点两边的表面张力都与凹形的液面相切,大小相等,但不在同一平面上,所以会产生一个向上的合力。,所有的点产生的总压力为Ps,称为附加压力。凹面上向下的总压力为:Po-Ps,所以凹面上所受的压力比平面上小。,2023/3/31,杨-拉普拉斯公式,1805年Young-Laplace导出了附加压力与曲率半径之间的关系式:,特殊式(对球面):,根据数学上规定,凸面的曲率半径取正值,凹面的曲率半径取负值。所以,凸面的附加压力指向液体,凹面的附加压力指向气体,即附加压力总是指向球面的
13、球心。,一般式:,2023/3/31,Young-Laplace 一般式的推导,1.在任意弯曲液面上取小矩形曲面ABCD(红色面),其面积为xy。曲面边缘AB和BC弧的曲率半径分别为和。,2.作曲面的两个相互垂直的正截面,交线Oz为O点的法线。,3.令曲面沿法线方向移动dz,使曲面扩大到ABCD(蓝色面),则x与y各增加dx和dy。,2023/3/31,Young-Laplace 一般式的推导,2023/3/31,Young-Laplace 一般式的推导,5.增加dA面积所作的功与克服附加压力Ps增加dV所作的功应该相等,即:,4.移动后曲面面积增加dA和dV为:,2023/3/31,Youn
14、g-Laplace 一般式的推导,6.根据相似三角形原理可得:,7.将dx,dy代入(A)式,得:,8.如果是球面,,2023/3/31,Young-Laplace特殊式的推导,(1)在毛细管内充满液体,管端有半径为R 的球状液滴与之平衡。,外压为 p0,附加压力为 ps,液滴所受总压为:,p0+ps,2023/3/31,Young-Laplace特殊式的推导,2.对活塞稍加压力,将毛细管内液体压出少许,使液滴体积增加dV,相应地其表面积增加dA。克服附加压力ps环境所作的功与可逆增加表面积的吉布斯自由能增加应该相等。,代入得:,2023/3/31,附加压力与毛细管中液面高度的关系,1.曲率半
15、径R与毛细管半径R的关系:R=R/cosq,2.ps=2g/R=(rl-rg)gh,如果曲面为球面,则R=R。,因rlrg所以:ps=2g/R=rlgh,一般式:2g cosq/R=Drgh,2023/3/31,附加压力与毛细管中液面高度的关系,2023/3/31,弯曲表面上的蒸汽压开尔文公式,对小液滴与蒸汽的平衡,应有相同形式,设气体为理想气体。,液体(T,pl)饱和蒸汽(T,pg),2023/3/31,弯曲表面上的蒸汽压开尔文公式,这就是Kelvin公式,式中r为密度,M 为摩尔质量。,2023/3/31,弯曲表面上的蒸汽压开尔文公式,Kelvin公式也可以表示为两种不同曲率半径的液滴或蒸
16、汽泡的蒸汽压之比,或两种不同大小颗粒的饱和溶液浓度之比。,对凸面,R取正值,R越小,液滴的蒸汽压越高,或小颗粒的溶解度越大。,对凹面,R取负值,R越小,小蒸汽泡中的蒸汽 压越低。,2023/3/31,12.3 液体界面的性质,液体的铺展,表面活性物质,非表面活性物质,Gibbs吸附公式,正吸附和负吸附,两亲分子在气液界面上的定向排列,2023/3/31,液体的铺展,一种液体能否在另一种不互溶的液体上铺展,取决于两种液体本身的表面张力和两种液体之间的界面张力。,一般说,铺展后,表面自由能下降,则这种铺展是自发的。,大多数表面自由能较低的有机物可以在表面自由能较高的水面上铺展。,2023/3/31
17、,液体的铺展,设液体1和2的表面张力和界面张力分别为g1,g,g2,g和g1,2。,在三相接界点处,g1,g和g1,2的作用力企图维持液体1不铺展;,而g2,g的作用是使液体铺展,如果g2,g(g1,g+g1,2),则液体1能在液体2上铺展。,2023/3/31,表面活性物质,能使水的表面张力明显降低的溶质称为表面活性物质。,这种物质通常含有亲水的极性基团和憎水的非极性碳链或碳环有机化合物。亲水基团进入水中,憎水基团企图离开水而指向空气,在界面定向排列。,表面活性物质的表面浓度大于本体浓度,增加单位面积所需的功较纯水小。非极性成分愈大,表面活性也愈大。,2023/3/31,非表面活性物质,能使
18、水的表面张力明显升高的溶质称为非表面活性物质。如无机盐和不挥发的酸、碱等。,这些物质的离子有水合作用,趋向于把水分子拖入水中,非表面活性物质在表面的浓度低于在本体的浓度。,如果要增加单位表面积,所作的功中还必须包括克服静电引力所消耗的功,所以表面张力升高。,2023/3/31,Gibbs吸附公式,它的物理意义是:在单位面积的表面层中,所含溶质的物质的量与具有相同数量溶剂的本体溶液中所含溶质的物质的量之差值。即:,式中G2为溶剂超量为零时溶质2在表面的超额。,a2是溶质2的活度,dg/da2是在等温下,表面张力g 随溶质活度的变化率。,2023/3/31,正吸附和负吸附,吉布斯吸附公式通常也表示
19、为如下形式:,1.dg/dc20,增加溶质2的浓度使表面张力下降,G2为正值,是正吸附。表面层中溶质浓度大于本体浓度。表面活性物质属于这种情况。,2.dg/dc20,增加溶质2的浓度使表面张力升高,G2为负值,是负吸附。表面层中溶质浓度低于本体浓度。非表面活性物质属于这种情况。,2023/3/31,两亲分子在气液界面上的定向排列,根据实验,脂肪酸在水中的浓度达到一定数值后,它在表面层中的超额为一定值,与本体浓度无关,并且和它的碳氢链的长度也无关。,这时,表面吸附已达到饱和,脂肪酸分子合理的排列是羧基向水,碳氢链向空气。,2023/3/31,两亲分子在气液界面上的定向排列,根据这种紧密排列的形式
20、,可以计算每个分子所占的截面积Am。,式中L为阿伏加德罗常数,G2原来是表面超额,当达到饱和吸附时,G2可以作为单位表面上溶质的物质的量。,2023/3/31,12.4 不溶性表面膜,表面压,Langmuir膜天平,2023/3/31,表面压,式中p称为表面压,g0为纯水的表面张力,g为溶液的表面张力。由于g0g,所以液面上的浮片总是推向纯水一边。,由实验可以证实表面压的存在。在纯水表面放一很薄的浮片,在浮片的一边滴油,由于油滴在水面上铺展,会推动浮片移向纯水一边,把对单位长度浮片的推动力称为表面压。1917年Langmuir设计了直接测定表面压的仪器。,2023/3/31,Langmuir膜
21、天平,图中K为盛满水的浅盘,AA是云母片,悬挂在一根与扭力天平刻度盘相连的钢丝上,AA的两端用极薄的铂箔与浅盘相连。,XX是可移动的边,用来清扫水面,或围住表面膜,使它具有一定的表面积。在XXAA面积内滴加油滴,油铺展时,用扭力天平测出它施加在AA边上的压力。这种膜天平的准确度可达110-5N/m。,2023/3/31,Langmuir膜天平,2023/3/31,Langmuir膜天平,如果用表面压p 对表面积A作等温线(p-A图),可以看到p-A图因分子的本性不同或温度不同而不同。当表面膜行为象二维理想气体时,它的状态方程为:,用该公式,如已知蛋白质的质量和铺成单分子膜的面积A,测出表面压p
22、,可计算出蛋白质的摩尔质量。,2023/3/31,12.5 液-固界面现象,粘附功,浸湿功,内聚功,铺展系数,接触角,2023/3/31,粘附功(work of adhesion),在等温等压条件下,单位面积的液面与固体表面粘附时对外所作的最大功称为粘附功,它是液体能否润湿固体的一种量度。粘附功越大,液体越能润湿固体,液-固结合得越牢。,在粘附过程中,消失了单位液体表面和固体表面,产生了单位液-固界面。粘附功就等于这个过程表面吉布斯自由能变化值的负值。,2023/3/31,粘附功(work of adhesion),2023/3/31,浸湿功(work of immersion),等温、等压条
23、件下,将具有单位表面积的固体可逆地浸入液体中所作的最大功称为浸湿功,它是液体在固体表面取代气体能力的一种量度。,只有浸湿功大于或等于零,液体才能浸湿固体。在浸湿过程中,消失了单位面积的气、固表面,产生了单位面积的液、固界面,所以浸湿功等于该变化过程表面自由能变化值的负值。,2023/3/31,浸湿功(work of immersion),2023/3/31,内聚功(work of cohesion),等温、等压条件下,两个单位液面可逆聚合为液柱所作的最大功称为内聚功,是液体本身结合牢固程度的一种量度。内聚时两个单位液面消失,所以,内聚功在数值上等于该变化过程表面自由能变化值的负值。,2023/
24、3/31,内聚功(work of cohesion),2023/3/31,铺展系数(spreading coefficient),等温、等压条件下,单位面积的液固界面取代了单位面积的气固界面并产生了单位面积的气液界面,这过程表面自由能变化值的负值称为铺展系数,用S表示。若S0,说明液体可以在固体表面自动铺展。,2023/3/31,铺展系数(spreading coefficient),2023/3/31,接触角(contact angle),在气、液、固三相交界点,气-液与气-固界面张力之间的夹角称为接触角,通常用q表示。,若接触角大于90,说明液体不能润湿固体,如汞在玻璃表面;,若接触角小于
25、90,液体能润湿固体,如水在洁净的玻璃表面。,接触角的大小可以用实验测量,也可以用公式计算:,2023/3/31,接触角(contact angle),接触角的示意图:,2023/3/31,12.6 表面活性剂及其应用,表面活性剂分类,常用表面活性剂类型,表面活性剂效率和有效值,胶束,临界胶束浓度,亲水亲油平衡,表面活性剂的重要作用,浮游选矿,乳状液类型,起泡作用,增溶作用,乳化作用,洗涤作用,2023/3/31,表面活性剂分类,表面活性剂通常采用按化学结构来分类,分为离子型和非离子型两大类,离子型中又可分为阳离子型、阴离子型和两性型表面活性剂。显然阳离子型和阴离子型的表面活性剂不能混用,否则
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 表面 物理化学 课件
链接地址:https://www.desk33.com/p-260267.html