基于模糊推理的生猪行为监测研究与基于农业大数据背景下无公害肉牛的养殖技术.docx
《基于模糊推理的生猪行为监测研究与基于农业大数据背景下无公害肉牛的养殖技术.docx》由会员分享,可在线阅读,更多相关《基于模糊推理的生猪行为监测研究与基于农业大数据背景下无公害肉牛的养殖技术.docx(7页珍藏版)》请在课桌文档上搜索。
1、基于模糊推理的生猪行为监测研究与基于农业大数据背景下无公害肉牛的养殖技术摘要:大数据不仅充满了挑战和未知,也充满了更多的期待。在肉牛的养殖过程中,关于肉牛的喂养问题一定要学会因地制宜、具体问题具体分析;针对肉牛喂养过程中每一个因素都要考虑在内,以防出现由于知识不到位而在具体喂养过程当中,出现不可控制的各类病原体滋生。同时,注意肉牛的饲养技术,注意不同品种肉牛的日投食量和日饮水量。该研究主要基于农业大数据背景下阐述无公害肉牛的养殖技术。关键词:农业大数据;无公害肉牛;养殖技术农业是产生大数据的重要来源,也是大数据应用的广阔天地,覆盖面广的农业数据和复杂的数据源。关于农业大数据,指的是使用数据的概
2、念、技术和方法,解决农业和农业领域的数据收集、计算和存储应用等一系列的问题,是大数据的理论和技术在农业的应用和实践。农业大数据的数据是一个专门的应用理论和技术,除了公共属性的大数据,不可避免地具有农业数据本身的特点。1农业大数据背景下无公害肉牛养殖的问题1.1 肉牛遗传改良体系建设严重滞后肉牛养殖是指因地制宜,有计划地培育目标,为奶牛选择合适的公牛,或为多头选择合适的母牛交配,从而产生高品质的基因型育种子孙后代。当下肉牛饲养以养殖户散养为主,散养在养殖中占比高达80%,一户饲养在1-14头左右不等,多数饲养数量偏少,以耕牛方式饲养,饲料季节供应差异大,冬季甚至出现只喂干稻草现象,导致饲料转化率
3、低,肉牛经济效益不高。1.2 品种优化程度不高肉牛养殖中对品种无科学概念,育种及改良具有盲目性,导致肉牛养殖持续以黄牛为主,良种较少,科学的改良肉牛只占养殖比例30%-40%o地方黄牛具有耐粗饲、肉质口感好等优势,但是其生长慢、产肉少。有数据限制,发达国家肉牛体重平均达到295kg,世界平均水平为205kg,而我国仅为201.5kg。为改善该状况,“夏南牛”、“延黄牛”等育种成功,但是总体上无法满足优质头牛生产需求。1.3 种植业大型数据范围广,采用技术不成熟涉及范围广的农业生产,包括许多内容的培育种植,后期的流通、加工、贸易,涵盖自然、社会、经济等数据。目前,传感器技术、信息服务技术、智能识
4、别技术和农业物联网技术在农业领域的应用还不够成熟,还处于试验和探索阶段:先进应用设备和软件系统技术水平较低,大部分设备和软件系统在应用过程中偏差较大;涉农大数据企业分散,技术水平较低。1.4 肉牛产业链利润分配不合理“以家庭式分散养殖为主,以集约化养殖为辅”的饲养模式,未来这种养殖方式在我国会逐渐被淘汰。该种养殖方式对肉牛的养殖极为不利,较易出现繁殖率低、市场转化率低、疾病传播速度快以及集约化养殖造成的寄生虫病严重。2农业大数据背景下无公害肉牛养殖技术2.1 加大政策支持,促进肉牛的持续健康发展优化肉牛品种选择,提高肉牛质量。根据不同肉牛品种的特点,选择适宜的肉牛品种,如体型大、肉质鲜美、脂肪
5、含量低的品种,并采取科学的方法对肉牛进行相应的改良。由于黄牛体型小,为了改善我国黄牛的体型和口感,必须与西门塔尔牛杂交。2.2 针对病因,科学施治科学及时的防疫,提高机体免疫力。根据当地牛病疫情和现场实际情况,制定科学的免疫程序,每次免疫后及时检测抗体水平,平时根据抗体水平和疫情情况对相关牛病进行监测和调整,使肉牛始终处于有效免疫状态。2.3 建立农业大数据的信息平台(1)通过平台的建设,大数据研究中心汇集了所有的资源来构建农业特色;(2)通过数据整合,数据收集和处理,建设中国第一家专业农业数据资源中心;(3)依托农业相关的技术大数据,包括数据采集、存储、处理、分析、挖掘技术、显示技术等构建大
6、数据应用平台;(4)结果通过分析应用平台发布,形成农业部门的权威专业研究成果的发布平台,服务高校和政府、农业企业和社会公众,等等。2.4 建立健全肉牛养殖技术服务体系在肉牛养殖过程中,养殖户要想提高自己的养殖效益,就需要重视肉牛品种的科学选择,还需要重视对肉牛的科学饲养。在饲养管理,养殖户要坚持自繁自养的原则,采用科学的饲养管理方法,对肉牛喂配饲料。此外,在饲养过程中,养殖户要对当地的饲草资源进行充分的利用。如此一来,就能够确保肉牛的健康成长,有效降低肉牛染病的概率,从而提升肉牛养殖户的养殖效益。摘要:为了在生猪养殖过程中更加快速精准地监测生猪异常行为规律,避免由人工观察所产生的耗时、费力、主
7、观性、随意性等缺点。该文通过查阅大量的相关文献,并使用文献综述法和对比分析法围绕对生猪的异常行为监测展开梳理。通过对诸多文献的概括分析可以看出,研究主要集中在猪的分割与行为识别这几个方面,找出了当前研究中存在的问题,并提出了解决这些问题的未来研究工作设想,提出了几点针对性建议,作为后续学者研究的参考方向。该文总结基于计算机视频监控、音频技术和传感器等技术与图像处理和深度学习等方法相结合来监测猪的行为的发展过程,深度学习逐渐被应用在动物行为识别方面,虽然关于生猪行为监测的技术已经取得了良好成果,但是在提高监测技术的实时准确性方面还有待提高。关键词:生猪;行为;视频技术;传感器;监测随着人们对猪肉
8、产品需求的不断增加,生猪的养殖和管理已经成为提高养殖场生产效率的重要手段。生猪的行为可以反映猪只的健康、福利和生长状况,从而影响猪的出栏率和养殖场的经济效益1。过去,对猪的健康状况初步判断是由饲养员的个人判断决定的,如今,可以利用机器自动对生猪的行为进行监测12o在正常环境下,猪每天都会进食、饮水、排泄和休息,而当猪受到不良的刺激或者在恶劣的环境中,猪可能就会表现出啃咬圈舍材料、发出异常叫声、长时间嗜睡、互相攻击和经常拱腹等异常行为3。养猪行业逐渐步入智能化时代,智能化的养猪模式为养殖人员提供精确的管理措施4。因此,基于上述背景,通过对生猪行为识别监测文献的查阅,该文主要对计算机视频监控、音频
9、和传感器等技术来监测猪的行为和对图像处理方法和深度学习方法的应用进行综述,进行总结并提出未来的发展建议,使未来研究人员少走弯路。1国外研究现状视频监控技术具有无接触、低成本、使用方便等优点,已经在许多养殖场得到广泛的应用,随着卷积神经网络的使用,FasterR-CNNMaskR-CNNSSD.YOLO等用于检测深度学习的模型在生猪行为监测等方面备受青睐。Abozar等人利用2D相机和3D成像技术准确地去监测牲畜的行为,并提出了用于监测牛和猪饮水、躺卧、运动和攻击性的早期异常行为自动识别技术5。MatthewsSG等人根据3D轨迹自动测量猪的站立、进食、饮水和运动活动,开发了可以让饲养人员实时监
10、控猪的多种行为的自动监控系统6。ChenC等人采用分层聚类法计算阈值,提出了一种基于计算机视觉自动检测生猪攻击性行为的方法,该方法可以精准的监测出生猪的中、高攻击性行为17oMhairiJ等人使用3D摄像机获取猪咬尾的照片,通过比较猪尾巴的损伤评分数据,发现3D机器视觉系统可以自动检测猪尾姿势,并向养殖人员提供猪咬尾巴的早期预警8。Hansen等人提出了利用卷积神经网络等三种模型去采集数据,使用人工获取的数据集进行训练,使用Grad-CAM的类激活映射来识别猪的区域,从而对养殖场里猪的行为进行监测9。HuangW等人通过使用GabOr过滤器提取猪的图像,采用猪的站立姿势图像进行支持向量机分类实
11、验,提出了基于机器视觉的生猪行为检测方法口0。YangQ等人利用检测器对生猪的头部进行识别,并对养殖场中的声音进行降噪,提出了一种基于FasterR-CNN来定位和识别养猪场中猪的监测方法11。CorreaEC等人在猪舍中每三分钟记录一次每只猪的耳皮肤温度,通过电子喂食站监测每只动物的体重、持续时间和进食量,根据猪只的热量和摄入模式,识别出具有不同行为的猪只口2。ChenY等人应用MaskR-CNN网络分割并提取帧中的单个猪只,使用KELM对特征向量进行分类,提出可见光图像数据特征检测猪的行为方法13。LiB等人提出一种基于视频监测生猪行为的检测方法,该方法能够有效可靠地提取复杂场景中猪的行为
12、14。MocD等人将递归神经网络和卷积神经网络组合在一起,提取时空特征并对行为类别进行分类,这种方法能够监测和定位群体猪中89.23%的咬尾行为U5。MarsotM等人利用两个基于Haar特征的分类器和一个浅卷积神经网络去识别猪的脸和眼睛,采用深度卷积神经网络识别人脸,从而将人脸和猪脸分别开,提出了这种由计算机视觉算法、机器学习和深度学习技术组成的监测方法16。AIameerA等人使用视频监控技术和基于GoogLeNet架构的单个深度学习网络,开发一种自动来监控群猪的喂养和非营养性访问行为的监测方法,该方法无需在猪身上安装传感器或单独标记17。JOhnStonLJ等人使用光流算法监测生猪咬尾的
13、相关行为视频,可以预测猪的咬尾行为18。ZhangK等人以视频中的图像帧和光流作为双流输入对象,充分提取了时空行为特征,提出了基于深度学习的双流卷积网络模型,创建了一个标准的猪视频行为数据集,并进行了一系列对比实验19。近年来,可穿戴在猪身上的微型传感器因其小巧价格低廉使用方便,并且可以持续对生猪的行为进行监测,Visavet等人在猪只的耳标中嵌入生物传感器来捕获猪只感染前后的数据,并使用摄像机每天24小时监测猪只,开发一种智能监测技术来实时监测生猪的体温和运动,有助饲喂人员早期发现传染病20。ZhuW等人使用帧差法获得移动像素,使用支持向量机对这些特征进行分类,提出一种自动监测群猪攻击性行为
14、的方法21。NaSirahmadiA等人提出了三种基于深度学习的监测方法,包括(FaSterR-CNN、SSD、R-FCN),并结合InCePtionReSNetV2来提取RGB图像,并对来自不同养殖场的数据模型进行训练和验证,结果表明该方法可以有效的识别猪的站立、侧卧和趴卧姿势22。HalaChmil等人给动物身上穿戴传感器,可以准确的监测动物的行为,给饲喂人员提前发出警报232国内研究现状随着中国养殖数量和规模的日益增加,机器视觉技术也被广泛的应用在动物的行为识别监测和畜禽质量的检验等方面。闫丽等人使用电子测量技术和视频技术对生猪身体的姿势变化以及发出的声音等异常行为进行监测和分析,从而进
15、一步了解生猪的习性,提高生猪的生产性能24。李亿杨等人结合粒子滤波法和目标轮廓形心法,实现对生猪的自动跟踪,并且记录并分析生猪的异常行为25。康飞龙等人利用CCD相机采集猪的图像照片,利用卷积神经网络来完成对获取猪只图像进行提取,并采取特征融合方法来识别图像的深度特征,自动监测生猪的行为26。薛月菊等人利用KineCt2.0传感器来捕捉哺乳母猪的RGB-D图像,并利用FasterR-CNN来完成对哺乳期母猪的定位以及站、坐、卧等姿势的分类,该方法可以完成对生猪的实时监测27。高云等人利用机器视频识别技术来监测生猪的攻击行为,并且通过3D卷积神经网络模型来分析生猪的行为,为生猪的攻击行为监测提供
16、了重要的参考价值28。施宏等人使用Kinect2.0传感器采集母猪的数据,提出一种基于Kinect哺乳期母猪姿态监测技术,该技术可以减少饲喂人员与生猪的接触次数,并且判断猪的健康情况29。李丹等人通过Labelme和MaskR-CNN网络来识别分割出猪的区域来获得像素面积,并用获得的面积组成生猪的爬跨行为测试样本集,最后利用测试集测试猪的爬跨行为,此方法为智能化养殖提供了有力的技术支撑301。杨秋妹利用FaSterR-CNN算法对获取生猪的图像进行个体识别,并用采集到的数据搭建起监管平台,对疑似有异常行为的猪进行预判,大大减少养殖场的经济损失31。宋伟先利用双边滤波器检测生猪的行为特征,提出了
17、一种基于ReSNet的生猪监测模型,有效的提高对生猪监测的准确率32。王浩等人将FasterR-CNN算法和PNPoly算法应用在生猪监测技术中,实现对猪舍生猪行为的准确监测,为猪舍的环境和空间设计提供了理论和技术的支撑3引。季照潼等人利用机器视觉技术对生猪地站立、进食、坐立和攻击行为的照片进行标识,通过YOLOV4模型对生猪的行为进行测试、验证和分析,有效地监测出生猪的异常行为34。随着集约化技术的不断发展,可穿戴在动物身上的传感器能够实现对牲畜准确而又可持续的监测,并给饲喂人员提供预警。王传哲等人利用MPU-6050微惯性传感器研发一种可佩戴在生猪颈部来检测生猪的站、走、卧、躺行为模型,识
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 模糊 推理 生猪 行为 监测 研究 农业 数据 背景 公害 肉牛 养殖 技术
链接地址:https://www.desk33.com/p-301254.html